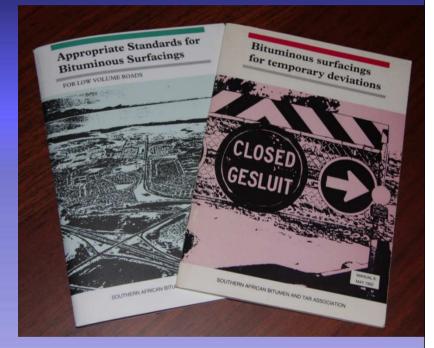

SABITA Manual 10


Bituminous Surfacings for Low Volume Roads and Temporary Deviations

Gerrie van Zyl Phil Paige-Green Les Sampson

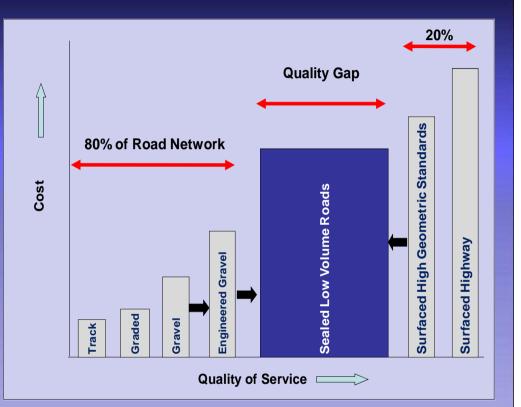
Background

- Manual 9 and 10 published 1992
- Based on 3-year study (98 road sections)
- Some aspects
 Still valid
 Outdated

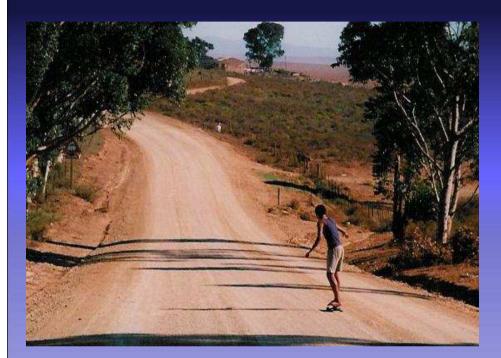
Updating Manual 9 and 10

- Revisit initial study documentation
- Reassess old sites
- Feedback from industry
- 40 New sites
- Update document
 Risks
 Surfacing selection
 Costs
 Warrants for upgrading

New Manual 10

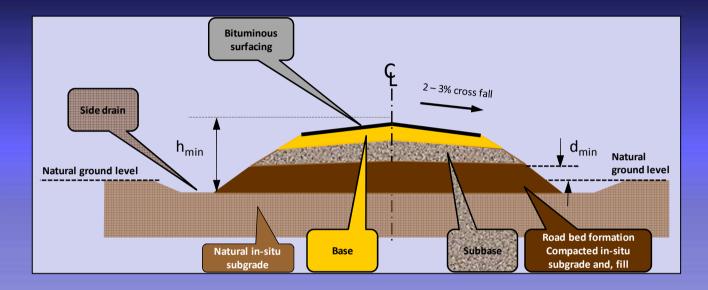

- Introduction
- Surfacing of unsealed roads
 - Main considerations
 - Levels and standards of upgrading
 - Principles of pavement performance
- Selection of appropriate surfacings
- Definitions of surfacing types
- Prime coat need and selection
- New construction surfacings
 Temporary seals & deviations
 Forestry roads and nature reserves
 Footways and cycling lanes

New Manual 10

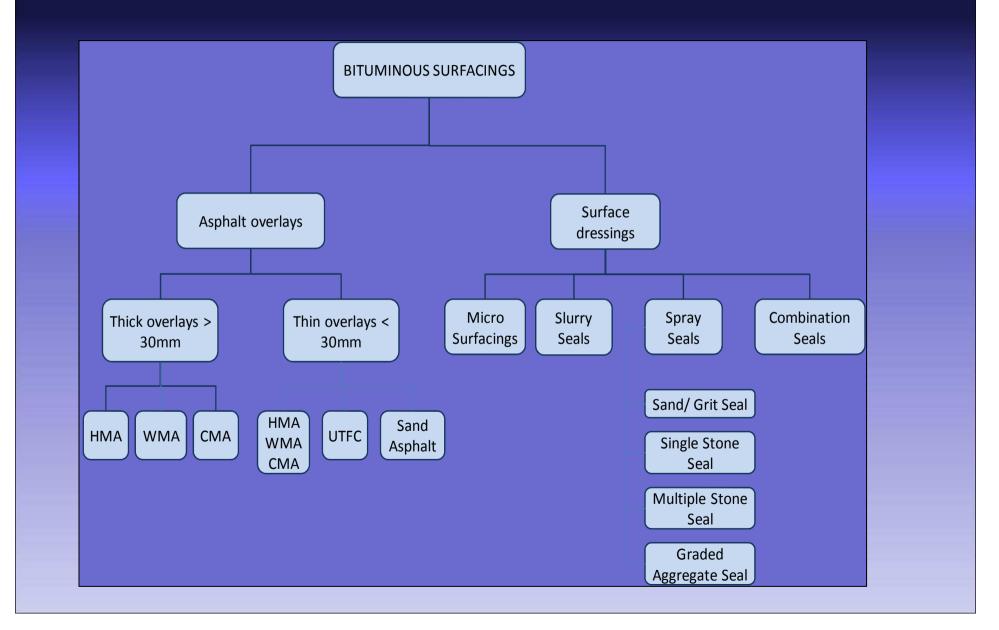

- Appropriate standards
 - Design
 - Materials
 - Construction
- Surfacing Costs
- Maintenance planning and management
 Reseal selection
 Seal maintenance
 When to reseal
 Warrants for upgrading
 - Simple economic calculations
 Available software
 - Multi-criteria analysis

Need for surfacing

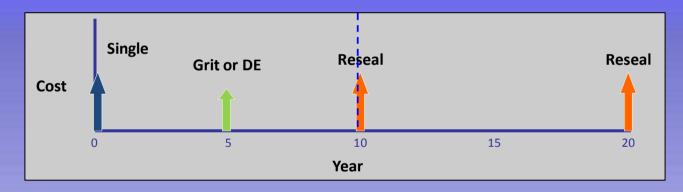
- Economic
- Social
- Environment
- Government strategies
- Quality of service delivery

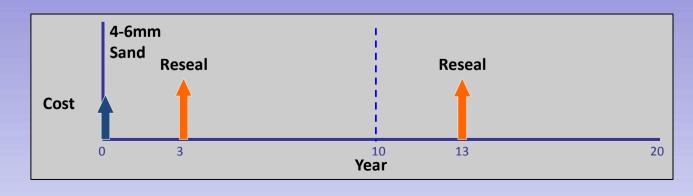


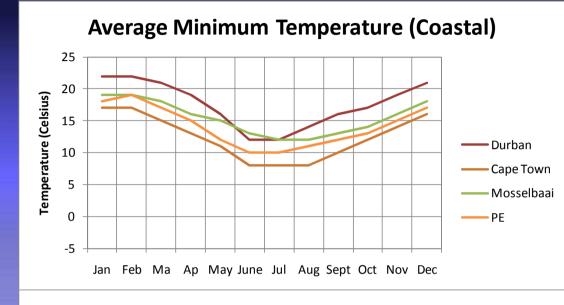
Upgrading guidelines

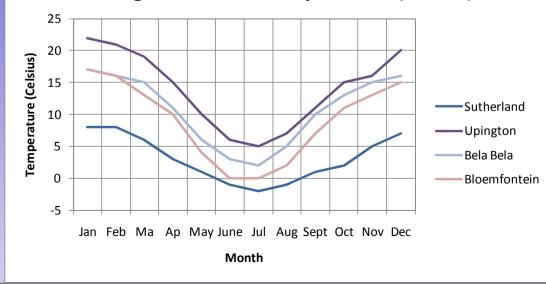


Upgrading guidelines


	Approximate	h _{min}				
Traffic Class grouping	AADT with 10% Heavy vehicles (Both Directions)	Dry Climate (Weinert N>5)	Moderate Climate Weinert N (2-5)	Wet Climate Weinert N <2		
ES 0.003 – ES 0.01	< 200	250mm	300mm	350mm		
ES 0.03 – ES 0.1	200 - 400	350mm	400mm	450mm		
ES 0.1 – ES 0.30	>400	450mm	500mm	550 mm		


DEFINITIONS


Surfacing strategies



Climate risks

Average Minimum Temperature (Inland)

Initial Surfacing Selection:

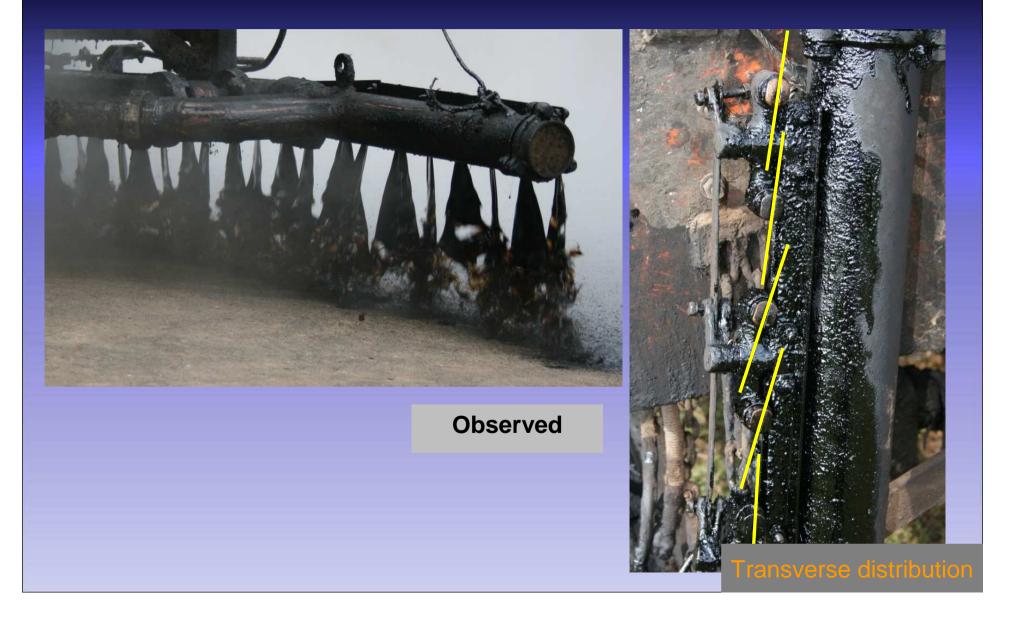
	Thin seal/ phased strategy				Double/ Comination seal strategy				Microsurfacing/Asphalt Strategy						
	Thin sand/ Grit	Thin Slurry	Thick graded sand	Single seal	Single plus sand sea		Single Otta plus sand	Double Otta	13 Cape Seal	19 Cape Seal	SB Macadam	Thick Microsurfa cing	Sand Asphalt	Thin Asphalt	Thick Asphalt
Suitability for labour Intensive construction															
Risk of poor maintenance capability															
High skid resistance required															
Early road marking required															
Suitability for turning actions															
Sensitivity to gradient															
Sensitivity to Urban drainage															
		Very Go	od			Good			Reasonabl	le			High Risk/	Not suitab	le

Temporary deviations

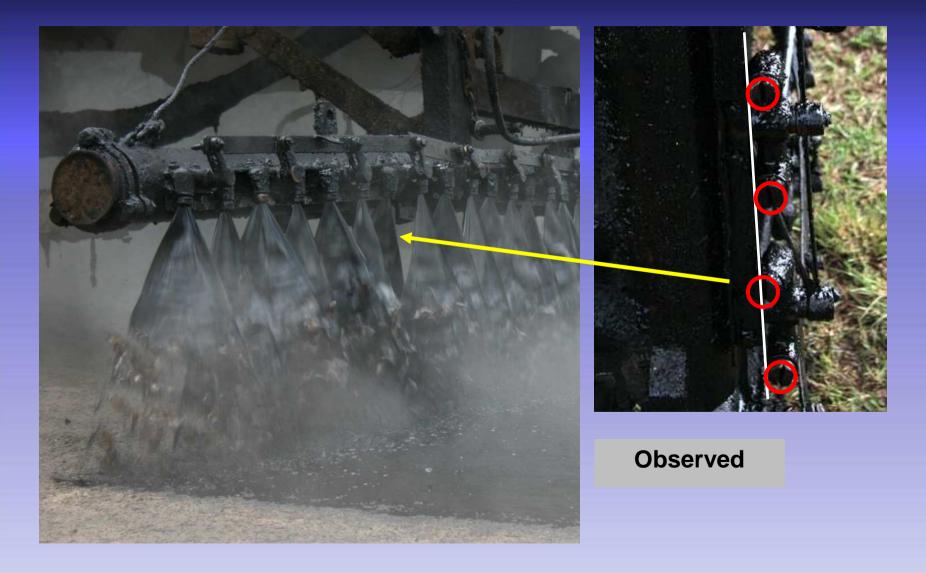
Duration of		Traffic Volume							
temporary deviation (months)	500 vpd	2 500 vpd	10 000 vpd						
1	Gravel (DP)	DP	DP						
2	Gravel (DP)	S1	S1						
3	DP	S1	S1						
4 to 5	S1	S1	S2						
6	S1	S1	S2						
7	S1	S2	Asphalt						
8 to 9	S1	S2	Asphalt						
10 – 12	S1	Asphalt	Asphalt						
13 - 24	S2	Asphalt	Asphalt						

Notes:

Gravel	-	Properly compacted wearing course (Refer TRH20)
DP	-	Dust Palliative
		Both bituminous with sand or chemical products could work
S1	-	Single seal with cover spray and preferably with sand
		blinding or Thick graded sand
S2	-	Multiple or combination seal type e.g.
		Stone and Grit seals (9,5 or 13,2 mm plus grit)
		Stone and slurry combination (9,5mm plus slurry)
		Otta seals


Material standards

- Binders No reduction in standards recommended
- Aggregate (Appropriate for LVSR) e.g.
 10% FACT (150 for < 200vpd) (180 for up to 500 vpd)
 PSV (45 up to 500 vpd)
 ALD target values (COLTO) reduced
 Grading of seal aggregate (Grade 3 COLTO acceptable)
 Flakiness (Grade 3 COLTO acceptable)
 Sand equivalent (Reduced Dependant of seal type)

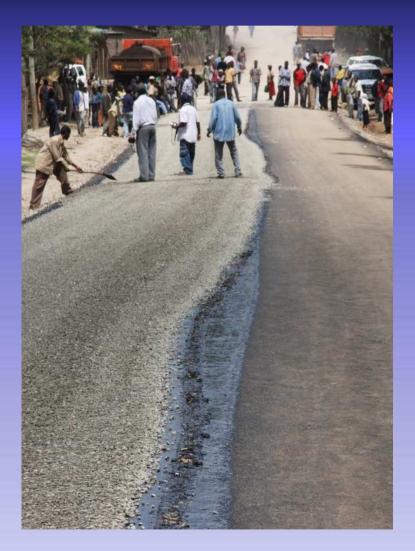

Construction

- Main reasons for poor performance
 - Poor base construction
 Poor joint construction
 Transverse distribution
 Too low binder content
 Quality control

Nozzle angles

Nozzle alignment

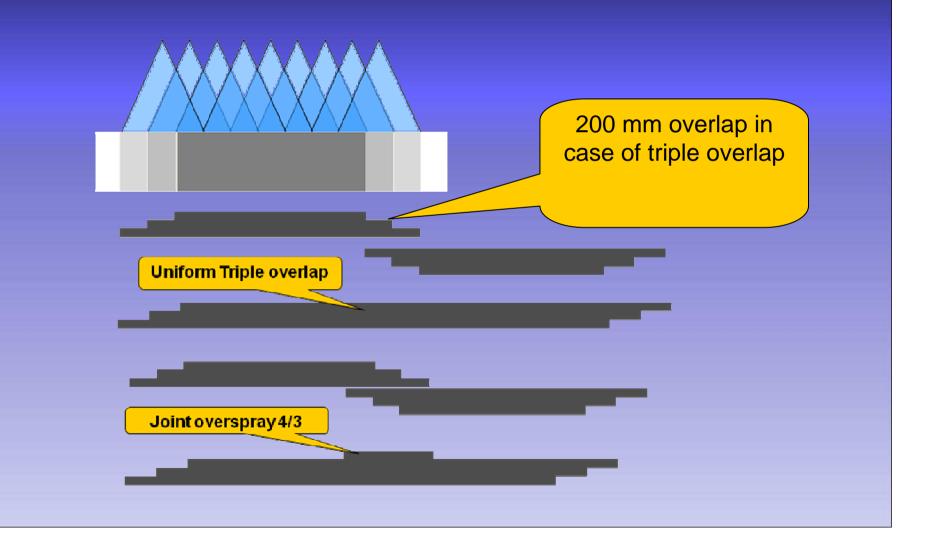
Poor Longitudinal Joints


Main Cause ? •Construction

Longitudinal joints

Longitudinal Joints

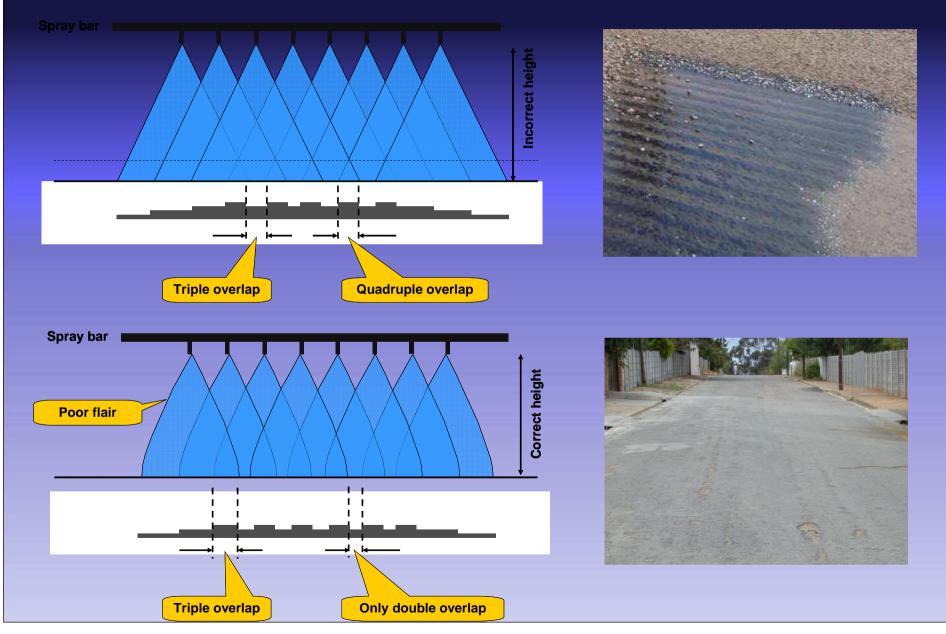
 Damage caused
 Chip spreader wheel running on bitumen


Stringline could help

Longitudinal joints

Longitudinal joint overlap

Poor transverse distribution



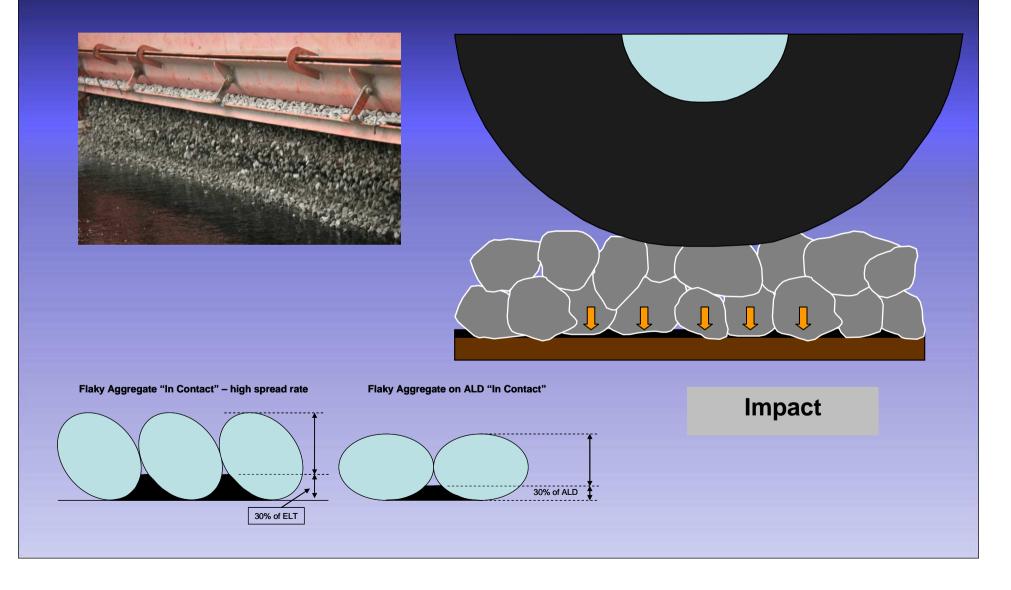
Too low binder application

Too high binder application

Tramlines

Transverse Joints

Observed

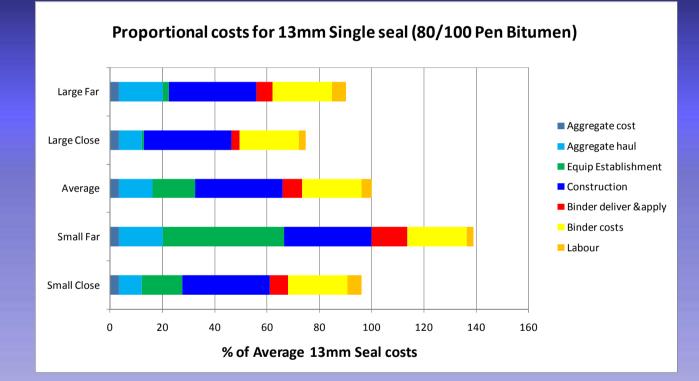


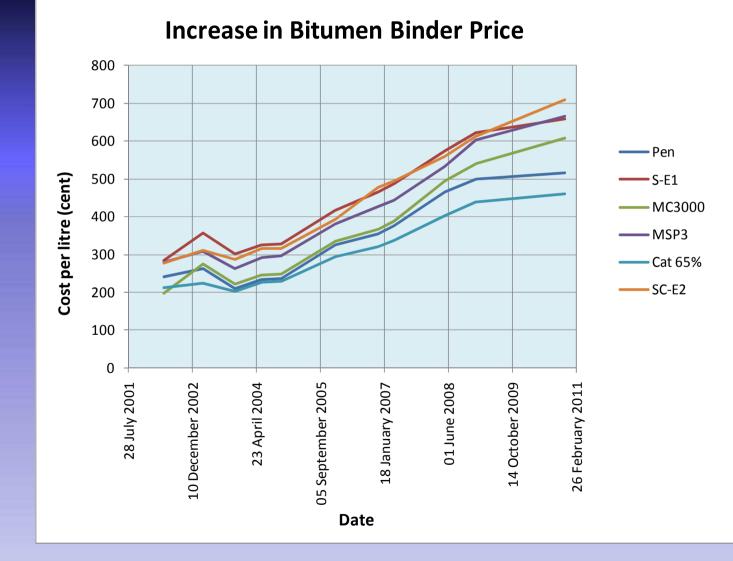
Recommended

Slide 24

Over application of single sized aggregate

Impacts of wrong surfacing

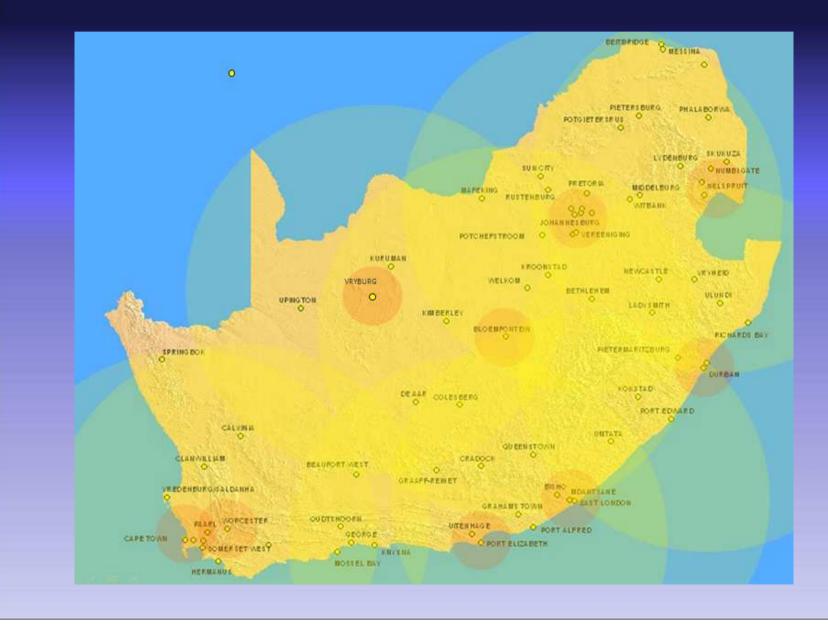

QA on Slurry bound


Cost of bituminous surfacings

Relative costs (Simplified cost model)

Type of surfacing		Binder	Cost ratio
Single seals	13,2 mm (precoated)	Penetration grade bitumen	1
		Bitumen rubber	1.49
		Polymer-modified bitumen	1.25
	13,2 mm + fog spray	Emulsion 65%	1.11
	13,2 mm + fog + sand	Emulsion 65%	1.52
		Latex emulsion	1.61
	9,5 mm (pre-coated)	Penetration grade bitumen	0.92
		Polymer-modified bitumen	1.08
	9,5 mm + fog spray	Emulsion 65%	1.01
	9,5 mm + fog spray + sand	Emulsion 65%	1.24
		Latex emulsion	1.41
	6,7 mm (pre-coated)	Penetration grade bitumen	0.6
	6,7 mm + fog spray	Emulsion 65%	0.6 0.87 0.69
Sand seals	Sand seal (single)	MC 3000	0.69
		Emulsion 65%	0.73
	Sand seal (double)	MC 3000	1 1.49 1.25 1.11 1.52 1.61 0.92 1.08 1.01 1.24 1.41 0.6 0.87 0.69 0.73 1.4 1.16 1.8 2 0.87 1.32 2.1 1.43 1.82 1.43
Graded aggregate seals	10 mm graded coarse sand seal	MC 3000	1.16
	Single Otta and Sand seal	MC 3000	1.8
	Double Otta seal	MC 3000	2
Slurry/ Microsurfacing	Fine slurry (3 mm)		0.87
	Coarse slurry (6 mm)		1.32
	Rapid setting coarse slurry (10 mm)		2.1
Double seals	13,2 mm + 6,7 mm	Penetration grade bitumen	1.43
		Polymer-modified bitumen	1.82
	19,0 mm + 9,5 mm	Penetration grade bitumen	1.6
	19,0 mm + 6,7 mm	Split application Polymer-	

Binder cost increase (12-14% pa)


Detailed cost model

Seal type

- Binder type for 2 layers
- Area to be surfaced at a time
- Distance from binder depot
- Haul distance of aggregate
- Expected surfacing production rate
- Distance of surfacing team establishment

Note: Taxes, traffic accomodation, risks etc not included

Main binder distribution depots

Warrants for upgrading

Simplified model for manual calculation

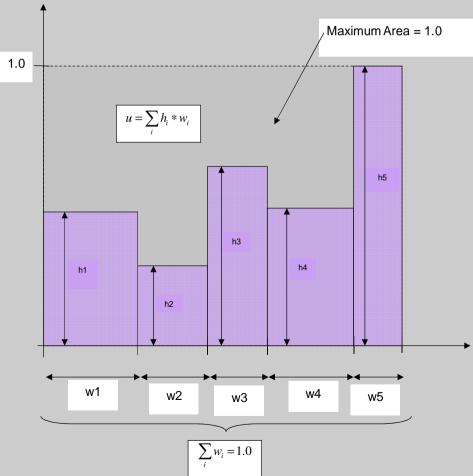
• Available software

HDM4
 RED (Roads Economic Decision Model)
 Super Surf

Warrants for upgrading (Simple model)

Table 26 Comparison of IRI values and road condition

Comfortable Speed	IRI (photo)	Typical Condition
100 km/h	< 5 (3)	
80 – 100 km/h	7.5 – 5 (5.7)	
60 - 80 km/h	10 - 7.5 (8)	
45 – 60 km/h	12.5 - 10 (11)	
< 35 km/h	15 (15)	


	Cost to maintai
IRI	Costratio
3	1.96
4	1.44
5	1.14
5.7	1.00
6	0.94
7	0.80
8	0.69
9	0.61
10	0.55
12	0.45
15	0.35

Vehicle Operating Costs for the current period in Rands per Vehicle/Kilometer

				View Unit P	Prices			
IRI m/km	Paved	Light Gravel	Paved	Taxi Gravel	Paved	Bus Gravel	Paved	Heavy
0.5	2.45857565	2.49191888	2.52409661	2.56924990	6.21001745	6.29042696	7.65445705	7.
0.6	2.46828512	2.50292284	2.53457977	2.58143052	6.28963358	6.37248637	7.72976047	7.
0.7	2.47796939	2.51390242	2.54503760	2.59358737	6.36800549	6.45330396	7.80473914	7.
0.8	2.48762900	2.52485819	2.55547068	2.60572100	6.44523095	6.53297748	7.87940348	8.
0.9	2.49726448	2.53579068	2.56587953	2.61783194	6.52139547	6.61159248	7.95376333	8.
1.0	2.50687634	2.54670039	2.57626468	2.62992072	6.59657443	6.68922430	8.02782805	8.
1.1	2.51646508	2.55758782	2.58662662	2.64198782	6.67083463	6.76593975	8.10160653	8.
1.2	2.52603118	2.56845345	2.59696583	2.65403374	6.74423560	6.84179837	8.17510720	8.
1.3	2.53557508	2.57929773	2.60728277	2.66605893	6.81683072	6.91685354	8.24833811	8.
1.4	2.54509724	2.59012111	2.61757791	2.67806385	6.88866802	6.99115327	8.32130690	8.
1.5	2.55459809	2.60092401	2.62785166	2.69004893	6.95979091	7.06474099	8.39402089	8.
1.6	2.56407804	2.61170686	2.63810445	2.70201458	7.03023881	7.13765612	8.46648704	8.
1.7	2.57353750	2.62247006	2.64833669	2.71396122	7.10004761	7.20993454	8.53871200	8.
1.8	2.58297684	2.63321399	2.65854877	2.72588924	7.16925015	7.28160909	8.61070213	8.
1.9	2.59239646	2.64393904	2.66874107	2.73779901	7.23787650	7.35270986	8.68246353	8.
2.0	2.60179673	2.65464558	2.67891398	2.74969094	7.30595440	7.42326456	8.75400203	8.
2.1	2.61117807	2.66533403	2.68906792	2.76156543	7.37350954	7.49329890	8.82532327	9.
2.2	2.62054100	2.67600491	2.69920344	2.77342305	7.44056611	7.56283706	8.89643274	9.
2.3	2.62988634	2.68665905	2.70932141	2.78526465	7.50714752	7.63190245	8.96733600	9.
2.4	2.63921549	2.69729784	2.71942335	2.79709177	7.57327753	7.70051885	9.03803886	9.
2.5	2.64853089	2.70792372	2.72951194	2.80890707	7.63898187	7.76871197	9.10854783	9.

Multi-Criteria analysis

- Principles to incorporate difficult quantifiable parameters e.g.
 - Social
 - Environmental

Way forward

- Draft for review (Week 16th May 2011)
- Feedback as soon as possible (Max mid June) gerriev@mycube.co.za
- Final adjustments
- Publishing

THE END

