



### Lessons from the first full scale EME Construction Project in South Africa – N3 Durban







Reg. No.1998/009584/30

### LOCALITY PLAN



## Site Description

- 8.5 km dual carriage highway
- 4 to 5 lanes in each direction
- 3 major interchanges
  - Paradise Valley (N3 / M13)
  - N3 & Spine Road (Pavilion Shopping Centre)
  - EB Cloete I/C (N2 / N3)
- Economic Route Durban Harbour and Gauteng
- Commuter Route
- 100000 vpd (6-10% Heavies)

### **Pavement History**

| Description                      | Sub-section A                                 | Sub-section B             |  |  |  |  |  |
|----------------------------------|-----------------------------------------------|---------------------------|--|--|--|--|--|
| Locality and construction date   |                                               |                           |  |  |  |  |  |
| Approximate applicable chainages | $\pm km 8.5 - \pm km 16.8 \pm km 16.8 - km 1$ |                           |  |  |  |  |  |
| Start description                | Candella Road                                 | km 16.8                   |  |  |  |  |  |
| End description                  | km 16.8                                       | Paradise Valley I/C       |  |  |  |  |  |
| Construction date                | 1974                                          | 1982                      |  |  |  |  |  |
| Pavement details                 |                                               |                           |  |  |  |  |  |
| Surfacing                        | 40mm semi-gap graded                          | 40mm semi-gap graded      |  |  |  |  |  |
| (original)                       | asphalt (AS)                                  | asphalt (AS)              |  |  |  |  |  |
| Base                             | 125mm continuously graded                     | 125mm continuously graded |  |  |  |  |  |
|                                  | asphalt (BC2)                                 | asphalt (BC2)             |  |  |  |  |  |
| Subbase (upper)                  | 150mm stabilized                              | 150mm stabilized          |  |  |  |  |  |
|                                  | (C3)                                          | (C4)                      |  |  |  |  |  |
| Subbase (lower)                  | 150mm stabilized                              | 150mm stabilized          |  |  |  |  |  |
|                                  | (C4)                                          | (C4)                      |  |  |  |  |  |
| Selected layer(s)                | 100mm natural gravel (G7)                     | 150mm natural gravel (G7) |  |  |  |  |  |

## Traffic Volumes (2012)

|                                           | CTO station                   |                               |                    |                                           |  |  |
|-------------------------------------------|-------------------------------|-------------------------------|--------------------|-------------------------------------------|--|--|
| Description                               | 792 <sup>*</sup><br>(EB East) | 979 <sup>*</sup><br>(EB West) | 809<br>(St. James) | 384 / 1388 <sup>**</sup><br>(Paradise V.) |  |  |
| Average Daily Traffic (ADT)               | 56,079                        | 53,309                        | 83,765             | 95,739                                    |  |  |
| Average Daily Truck Traffic (ADTT)        | 1,615                         | 3,485                         | 8,540              | 8,279                                     |  |  |
| Percentage of heavies (%)                 | 2.88%                         | 6.54%                         | 10.20%             | 8.65%                                     |  |  |
| Truck split % (Short : Medium :<br>Long)  | 58 : 26 : 16                  | 46 : 22 : 32                  | 44 : 22 : 34       | 48 : 20 : 32                              |  |  |
| Directional split : Heavy vehicles<br>(%) | N.A.                          | N.A.                          | 51.2 / 48.8        | Varies<br>(limited<br>data)               |  |  |
| Highest directional volume of<br>heavies  | N.A.                          | N.A.                          | To Durban          | Varies<br>(limited<br>data)               |  |  |
| Equivalent vehicle units (evu's)***       | 59,809                        | 60,279                        | 100,845            | 112,297                                   |  |  |

# **Existing Pavement**

- Rutting and cracking restricted to upper 120mm asphalt base and surfacing layers
  - Similar to previous intervention 2002
- Cemented sub-base still sound
  - Block cracked risk of reflection in base
- FWD deflection very low.
- remaining life : 30 msa
- Ideal perpetual pavement candidate

### **Pavement Rehabilitation**

- >ES100 required
- Replace 75mm BC on fast lanes (1 lift)
- Replace 120mm BC on slow lanes (2 lifts)
- UTFC final wearing course
- BC life >>>> UTFC life of 12 years
- Alternative to concrete pavement required

# EME ?

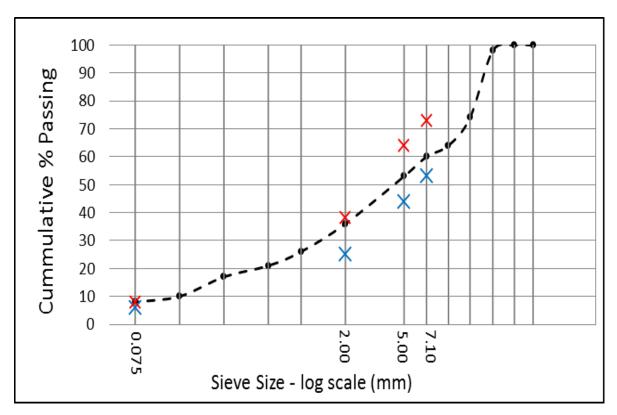
- Uncertainty in Pavement Design
  - Previous <u>modified</u> BC lasted only 12-years
  - Typically >180mm BC required for ES100
- High performance asphalt required
  - High Rutting and Fatigue cracking resistance
  - Road levels unchanged & sound subbase
- Next intervention to be only surfacing

Perpetual pavement

- View to future projects : N3 upgrade expected to be concrete, but EME could work
- 120mm EME (25-30% more efficient)

# **EME** Principles

- Based on the French technology Enrobé à Module Élevé(EME), developed in 1980's
- Low penetration Binder very hard but not brittle resulting in very stiff asphalt layers
- Superior load spreading, fatigue resistance and rutting resistance
- Thinner asphalt layers (30%) for same structural benefit
- Comparable to Polymer Mod Binders on performance and cost


## Mix Design

| Property                                  |                                                                     | No of         | Test<br>standard | Requirements                       |                                    |
|-------------------------------------------|---------------------------------------------------------------------|---------------|------------------|------------------------------------|------------------------------------|
|                                           | Test                                                                | specimen<br>s |                  | HiMA class                         |                                    |
|                                           |                                                                     |               |                  | Class 1                            | Class 2                            |
| Workability                               | Gyratory compactor, air voids after 45 gyrations                    | 3             | ASTM D6926       | ≤ 10%                              | ≤ 6%                               |
| Durability                                | Modified Lottman, TSR                                               | 6             | ASTM D4867       | ≥ 0.80                             | ≥ 0,80                             |
| Resistance to<br>permanent<br>deformation | RSST-CH, 55 ºC, 5 000<br>reps                                       | 3             | AASHTO<br>T320   | ≤ 1,1%<br>strain                   | ≤ 1,1%<br>strain                   |
| Dynamic<br>Modulus                        | Dynamic modulus at 10<br>Hz, 15 ⁰C                                  | 3             | AASHTO<br>TP62   | ≥ <b>1</b> 4 GPa                   | ≥ 14 GPa                           |
| Fatigue                                   | Beam fatigue test at 10<br>Hz, 10 °C, to 50% stiffness<br>reduction | 9             | AASHTO<br>T321   | ≥ 10 <sup>6</sup> reps<br>@ 300 με | ≥ 10 <sup>6</sup> reps<br>@ 390 με |

# MIX

- Max 14 mm Aggregate Tillite
- 5.6% 10/20 Pen Bitumen

20% RAP
SABITA
Manual 33



## Construction

#### • Night-work:

- Lane closures at 7pm
- Construction under lighting
- Milling
- Cleaning
- Inspection
- Crack Sealing
- Tack Application
- EME Asphalt Paving
- Opened to traffic by 5am



### Construction









## Compaction

- 20-ton Three Point Roller (TPR)
- 2 x 22-ton Pneumatic Tyre Rollers (PTR)
- 10-ton Tandem Vibrating Roller (TVR)
- 5 roller passes required to achieve compaction of 94%
  - 96% recommended
- No vibration on upper lifts
  - After poor riding quality initially observed

### Lessons learnt

- Stiffening of the EME
  - In the haul trucks
  - During compaction
- Density at the Longitudinal Joint
- Cracking at Longitudinal Joints
- Single layer paving
  - 20mm aggregate trial

### Lessons learnt

- Paving continuity (start-stop)
  - Affected riding quality
- Cold weather paving
  - >8 degrees
- EME as temporary Riding Surface
  - 10-months
- Riding quality correction

# QUICK STATS

- Final Project Cost R167-million
- EME paved = 75000 tons
- Production 400 tons/shift
- Imported bitumen cheaper than locally produced..resulting in project savings

### Sustainability

• Green Roads Foundation Pilot Project



- Energy Saving 21,75 million mega joules
   604,000 Litres Diesel = R6,6-million
- 1600 ton Reduction in Carbon Emissions
- Combination of EME and RAP

### What next?

- Continue monitoring N3/1
  - Fatigue and rutting
- N3 Cedara Temperature effects (IR Camera)
- N2 Controlled research Section for Pavement Design
  - N2/25 SBC at Edwin Swales (M7)
  - 300m sections each EME,GB5 and AP-1
  - Performance testing, workability gyratory compaction

### What next?

- Dynamic Modulus stiffness factors
- Acceptance testing requirements
  - Voids, Binder, Grading Curve 4 points
  - Workability Gyratory compaction every (5000 t)
- Long-term comparisons of the 4 projects
  - Fatigue, Rutting and Dynamic Modulus
  - Life cycle cost analysis





### Conclusion

- Project successful
  - time/quality/budget/expectations
- Large scale project was required to build confidence and reduce uncertainty
- Some difficulty experienced, but practical solutions developed