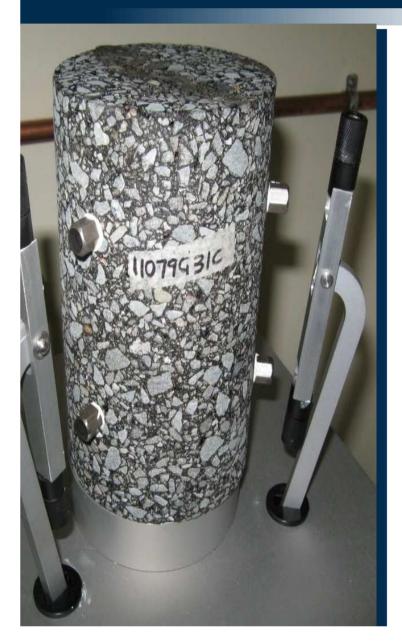
South African Asphalt Mix Design Manual

Prepared for presentation at the 22th meeting of the Roads Pavements Forum (RPF)

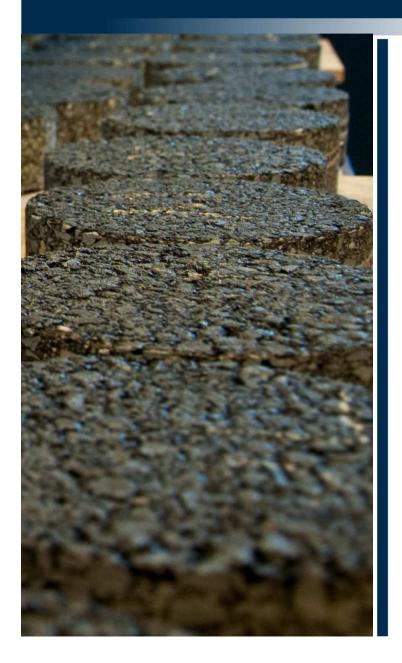
Pretoria, 8 & 9 November 2011

Erik Denneman



- Project plan and progress,
- State of the art study,
- Vision for the asphalt manual,
- Way forward.

- Drafting of the manual funded by the Southern African Bitumen Association (SABITA),
- Co-funding from CSIR for supporting research,
- Project consists of four phases:
- I. Establishment of project management structure,
- II. State of the art study,
- III. Experimental work and Manual development, and
- **IV.**Dissemination



- Update the design methods in line with international and local advances in asphalt technology and increasing demands placed on asphalt pavements,
- Include new mix types (e.g. HiMA, WMA), and
- Mix design method should have link to structural design methods of SAPDM.

State of the art study

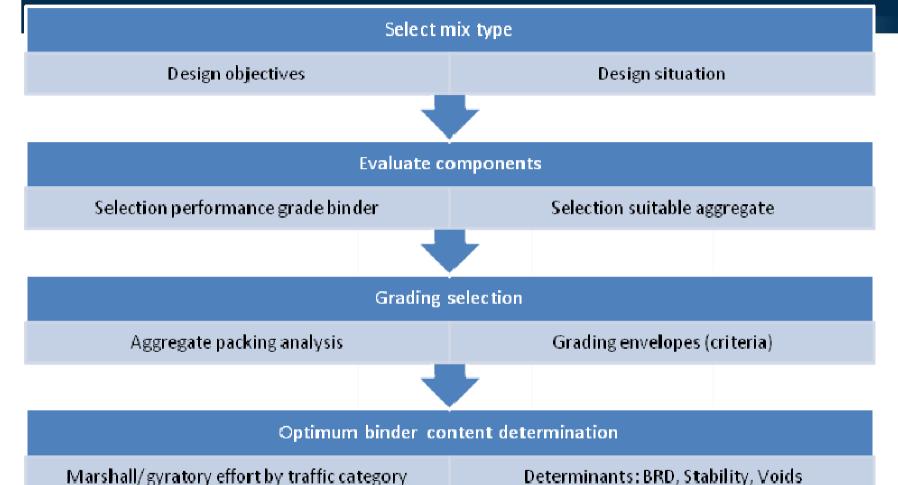
- Literature study:
 - Current practice in South Africa,
 - Local developments,
 - International developments.
- Interviews with stakeholders:
 - Producers (and other mix designers),
 - · Consultants,
 - Clients,
 - Academics

Key Findings

- International trend towards performance related design methods (EU, USA, AUS),
- Performance related design would allow increased reliability and simplification of the mix design and binder selection process,
- Direct link between performance tests and pavement design (SAPDM),
- Typical performance parameters:
 - Workability,
 - Durability,
 - Permanent deformation resistance,
 - Fatigue performance,
 - Stiffness.

Vision for the asphalt manual: binder testing

- Performance grade binder specification, similar to US SUPERPAVE
- Select binder for project specific traffic and climate conditions,
- Dynamic Shear Rheometer (DSR) to become main piece of equipment in binder testing,
- DSR results required to predict stiffness and aging of binder as part of SAPDM,
- Modified and unmodified binders to be assessed using the same specification,
- Project to validate use of PG for SA binders has begun.

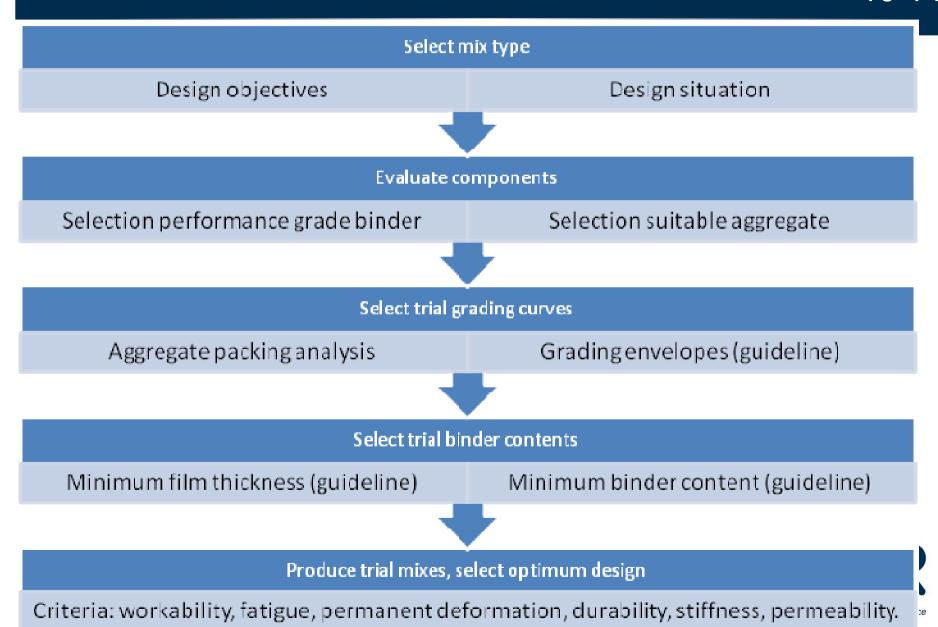


Vision for the asphalt manual: binder testing

Binder Property	Current Specification	New Proposed Specification
- ,	Equipment Requirements	Equipment Requirements
Short-term Ageing	Rolling thin Film Oven	Rolling thin Film Oven
Long-term Ageing	N/A	Pressure Ageing Vessel
Penetration	Penetrometer	N/a
Softening Point	Ring and Ball Apparatus	N/a
Viscosity	Brookfield Viscometer	DSR
Spot Test	Spot Test Kit	N/a
Elastic Recovery	Ductility Bath	N/a
DSR G* /sinδ	N/a	DSR
J_{nr}	N/a	DSR
DSR G* sinδ	N/a	DSR
A, VTS viscosity parameters	N/a	DSR
Percent Recovery at σ = 3.2 kPa	N/a	DSR
Storage Stability	Ring and Ball Apparatus	DSR
Flash Point*	Flash Point Cup	Flash Point Cup
Rolling Stones Test*	N/a	Turning apparatus

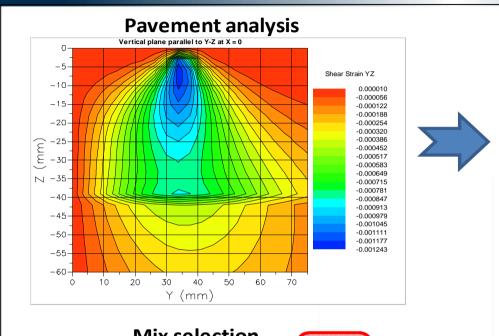
Vision: Revised conventional mix design process

9-14


Check empirical criteria

Stability, flow, stab/flow ratio, VMA, VFB, voids, film thickness

Optional: Dynamic creep, ITS, static creep, immersion index, permeability, modified Lottman



Vision: Performance related mix design

Parameter	IGDHMA	Method	Performance approach	Method
Workability	N/A	N/A	SUPERPAVE gyratory compactor	ASTM D 2013-98
Stiffness	Indirect tensile test	ASTM D4123 (withdrawn)	Dynamic modulus test	AASHTO TP 62
Permanent deformation	Dynamic creep	CSIR RMT-004	Permanent deformation test	To be finalized
	Static creep	TMH 1 – C6		
	MMLS	MMLS draft protocol 2008		
	Transportek wheel tracker	CSIR protocol		
	Modified Marshall			
	SUPERPAVE gyratory compactor	ASTM D 2013-98		
	Static creep	TMH 1		
	Axial loading slab test	CSIR protocol		
Fatigue	Indirect tensile strength	ASTM D4123	Four Point Bending test	AASHTO T 321
	Four Point Bending test	AASHTO T 321		
Moisture susceptibility	Modified Lottman	ASTM D4867	Modified Lottman	ASTM D4867

12-14

iviix selection			
Mix 1	Mix 2	Mix 3	
14	6	3	
220	370	280	
0.8 %	1.5 %	4.2 %	
5.0	4.5	5.2	
90	85	75	
	Mix 1 14 220 0.8 % 5.0	Mix 1 Mix 2 14 6 220 370 0.8 % 1.5 % 5.0 4.5	Mix 1 Mix 2 Mix 3 14 6 3 220 370 280 0.8 % 1.5 % 4.2 % 5.0 4.5 5.2

Structural requirements

Property	value
E* [GPa]	>5
Fatigue [$\mu\epsilon$ to 10^6]	> 300
Perm. def. $[\epsilon_p]$	< 2%

Tender specification

Property	value
E* [GPa]	>5
Fatigue [$\mu\epsilon$ to 10^6]	> 300
Perm. def. $[\epsilon_p]$	< 2%
Workability [voids]	< 6%
Durability [TSR]	>80%

Way forward

- Validation of performance grade binder selection in progress (due March 2012),
- Discussion document to be workshopped (early 2012),
- Experimental work performance related mix design and manual drafting to start.

© CSIR 2011

Thank you!

