Application of Advanced Laser Technology to Determine Aggregate Shape Properties

ROAD PAVEMENTS FORUM

TWENTY-EIGHTH MEETING CSIR International Convention Centre, Pretoria 19 & 20 November 2014 Joseph Anochie-Boateng

Background

- Rock aggregates make up more than 85%
 Portland cement concrete and 90% of asphalt pavements surfacing materials
- Coarse aggregates constitute the skeleton and occupy by far the highest mass or volume
- □ Single & double seal road surfaces, essentially coarse aggregates

Background

- Fundamental shape properties of aggregates have not been accurately quantified historically, because of their irregular and nonideal 3D shapes
- Insufficient knowledge regarding aggregate <u>shape/ surface</u> <u>characteristics</u> and their influence on the performance of roads

Current Methods

- Lack of accurate test methods for modelling the 3D effect of aggregate packing and performance (Only flakiness test in TMH 1 is the direct method for measuring aggregate shape properties in SA)
 - Overseas not different from SA; Flakiness test used in Europe; Flat & Elongation test used in the USA

4

Surface texture: No direct standard method Voids are used to get indication of surface texture (ASTM D 3398)

Surface area / Volume

Particle assumed to be spherical in shape..!

Angularity

Form (Roundness, Sphericity, Flatness, Elongation)

Angularity – fractured faces, visual..!

Surface Texture

Surface Area/ Volume

Current Methods

 All aggregates presented here are retained on 19 mm sieve by current standard grading methods (e.g., TMH1, ASTM, etc.)

Gravel

Crushed stone

Slag

Current Methods

• Surface area of aggregates for asphalt mix design is obtained from the following formula:

$$SA = \frac{1}{100} \sum PC$$

- SA = Surface area of the aggregate (m²/kg)
 P = Percentage by mass passing sieve sizes
 C = Surface area factor (m²/kg)
- <u>Hveem method (1942)</u> assumes only one fixed value of C for coarse aggregates
- C factors are based on an assumption that aggregate particles are spherical in shape

Sieve Sizes (mm)	Surface Area Factor (m ² /kg)
26.5	
19.0	
13.2	0.41
9.5	
6.7	
4.75	0.41
2.36	0.82
1.18	1.64
0.600	2.87
0.300	6.14
0.150	12.29
0.075	32.77

Advances in Aggregate Shape Characterisation

• Aggregate imaging techniques

Aggregate Image Analyser (2003)

Aggregate Imaging System (2007)

Advances in Aggregate Shape Characterisation

- **2009**: Transport Infrastructure group at CSIR investigated the use of laser scanning to evaluate aggregate shape properties
- It was found that a portable 3D laser device used in the health care field to visualise dental and orthopaedic structures could model the exact shapes of aggregates

****** CSIR sponsored the purchase of the laser equipment and funded the research (R 8 Million in the past 5 years)

3D Laser-Based Method

Surface area, Volume

Direct measurements from the laser

Form (Flatness, Elongation) **Direct measurements** Form (Sphericity, Roundness)

Sphericity
$$(\psi) = \frac{\sqrt[3]{36\pi V^2}}{A}$$

$$Roundness = \frac{V}{A\sqrt[3]{(abc)}}$$

Angularity

Angularity index = $\sum_{i=1}^{n_2} \sum_{i=1}^{n_2}$ $l = n_1 + 1 m = -$ centre of mass coordinates

Surface texture *Texture index* = $\sum_{l=1}^{l_{max}} \sum_{l=1}^{l} |a_{lm}|$

 $l=n_2 m=-$

9

Surface Area & Volume Validation

ASTM Journal of Transportation Engineering 2012

Journal of Construction & Building Materials 2013

Surface Area & Volume Validation

(a) 3-D Equi-dimensional particle No. of poly-faces = 2566Surface area $= 2045 \text{ mm}^2$ Volume $= 6241 \text{ mm}^3$

(b) 3-D flat/flaky particle No. of poly-faces Surface area Volume

= 1040= 1456 mm² = 2903 mm³

$$SA_T = \sum_{i=1}^N A_i = A_1 + A_2 + A_3 + \dots + A_N$$

$$= 1040 \qquad Area = \frac{1}{2} \sqrt{\left| det \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix} \right|^2 + \left| det \begin{pmatrix} y_A & z_A & 1 \\ y_B & z_B & 1 \\ y_C & z_C & 1 \end{pmatrix} \right|^2 + \left| det \begin{pmatrix} z_A & x_A & 1 \\ z_B & x_B & 1 \\ z_C & x_C & 1 \end{pmatrix} \right|^2}$$

	Area of principal planes			Poly-face Area		
Poly face no	Area XY	Area YZ	Area ZX	Pythagorean	Laser	Difference
Fory-race no.	×10 ⁻⁶	×10 ⁻⁶	×10 ⁻⁶	Area $\times 10^{-6}$	Area $\times 10^{-6}$	Area $\times 10^{-6}$
	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)
1	169.2354	493.0536	230.9698	14943.72	14943.74	-0.02
2	191.9350	1395.7502	374.8352	22150.17	22145.81	4.36
3	391.7549	1013.1871	138.1201	19640.91	19642.67	-1.76
4	204.0647	370.0068	73.7443	12726.11	12727.96	-1.85
5	1133.7160	1088.4338	714.1107	27093.64	27089.92	3.72

$$V = \frac{|(\boldsymbol{a} - \boldsymbol{d}) \cdot ((\boldsymbol{b} - \boldsymbol{d}) \times (\boldsymbol{c} - \boldsymbol{d}))|}{6} \quad V_T = \sum_{i=1}^N V_i = V_1 + V_2 + V_3 + \dots + V_N$$

Journal of Construction & Building Materials 2013

Shapes Differentiation by 3D Laser

our future through science

			Sie	eve Sizes (mm)	Surface Area Factor
Aggregate	Surface area	3D Laser based		26.5	(111 / Kg)
particle	factors	surface area		19.0	
size	(m²/kg)	factors (m ² /kg)		13.2	0.41
(mm)	TRH8, MS-4	CSIR		9.5	
19		0.13		6.7	
13.2		0.18		4.75	0.41
9.5	0.41 (Hveem,	0.24		2.36	0.82
6.7	1942!) 	0.31		1.18	1.64
		0.31		0.600	2.87
4.75		0.43		0.300	6.14
				0.150	12.29

Journal of Trans Eng © ASCE / August 2012

SA = 0.41 + 0.41a + 0.82b + 1.64c + 2.87d + 6.14e + 12.29f + 32.77g

SA' = 0.13a' + 0.18b' + 0.24c' + 0.31d' + 0.43e' + SA

$$SA = \frac{1}{100} \sum PC$$
 $T_F =$

$$T_F = \frac{V_{\rm asp}}{SA \times W} (1,000)$$

$$B_{PCC} = K \times \alpha \times \sqrt[5]{SA}$$

0.075

32.77

our future through science

Aggregates for five mixes

Laser-based approach for determining surface area of aggregates used in asphalt mixes

Material type	TMH 1 Method	3-D Laser method	Difference	Flaki
Granite	28.1	24.1	4.0	
Tillite	21.8	21.2	0.6	Index
Hornfels	29.9	29.3	0.6	(
Quartzite	36.4	35.3	1.1	FI =
Dolerite	18.4	14.9	3.5	
Andesite	29.6	23.4	6.2	
Alluvial gravel	3.1	5.5	-2.4	
Dolerite (Recycled ballast)	3.1	2.9	0.2	$FI_{v} =$
Dolerite (Fresh ballast)	20.2	13.8	6.4	

ness

 $\left(\frac{M_p}{M_T}\right) \times 100$

 $\left(\frac{V_p}{V_T}\right) \times 100$

	F&E Ratio (%) for 2:1 F&E Ratio (%) for 3:1		F&E Ratio (%) for 5:1				
Aggregate Type	ASTM D 4791 Method	3-D Laser Method	ASTM D 4791 Method	3-D Laser Method	ASTM D 4791 Method	3-D Laser Method	Fla Elo pa
Granite	64	59	31	23	10	3	
Tillite	63	54	32	16	5	2	
Quartzite	67	58	32	20	12	3	
Hornfels	56	52	26	24	13	2	
Alluvial Gravel	40	46	2	5	0	0	C
RA	60	49	15	11	0	0	0

at & ongated rticles ratio

17

Publication Highlight

By Joseph K. Anochie-Boateng, Ph.D. **Contributing Author**

pavement design in developing methods and procedures for accurate quantification of aggregate shape and surface properties, which are well known to influence the performance of asphalt and concrete pavements." 2012

The best of shape

3-D scanning in S. Africa gives aggregate a closer look

Summary of 3D Laser R&D at CSIR

Laboratory testing

Conclusions

- The 3D laser scanning approach has demonstrated that there are limitations in the current standard methods and specifications of aggregates used in pavements
- 3D laser is an appropriate tool improve the current specifications of aggregates
- A tool for establishing aggregate shape properties database to efficiently rank aggregate obtained from different crushers

Without proper modelling of aggregate materials, roads can deteriorate to such an extent that it incurs increased or unforeseen spending on infrastructure and even fatal road accidents

Knowing the shape of

CSIR researchers have developed a laser scanning approach to accurately measure the shape and surface area properties of natural crushed rock, as well as recycled and marginal aggregates to improve the durability of road and railway infrastructure and ultimately safety. In future, this can replace less accurate manual measuring techniques, which have been used for decades.

our future through science