Theoretical Analyses to Determine Risk of Buckling

Develop cncBuckle

- Buckling develops because of horizontal compression in the UTCRC
- Risk of buckling = Compression due to expansion (high temp. and humidity) > tensile stress due to shrinkage (high water content, fines, drying out)
- Interaction with support, reinforcement, variable cross section etc. complicates analysis: Finite Element Analysis

CICBUCKLE1, VO.8, ©2011 P STRAUSS & M SLAVIK (19f)

WELCOME CONTROL WHAT IF

С	Constant	Value	
1	t, years	1	
2	Ls, m	200	
3	Grad , %	4.5	Risk of SF<
4	hedge, mm	0	
5	alpha	9.0e-6	1.2 %

Identify your case here

Æ

Implications

- FEA indicated that normally shrinkage stress would be high enough to absorb any expansion
- Relaxation of tensile stress must have occurred
- Variation in thickness most critical
- Weakness such as construction joints may act as triggers
- Safety in joining with adjacent lanes (thickened edges), proper compaction, uniform slab thickness and support.

Less critical issues

- Position of the reinforcement in the slab
- Longitudinal slope of the pavement
- Aggregate content and strength of the concrete
- Bond between UTCRC and support
- Distance between construction joints

Thank you for your attention