High Modulus Asphalt (HiMA) trial Mix & pavement design

Prepared for presentation at the 22nd meeting of the Roads Pavements Forum (RPF)

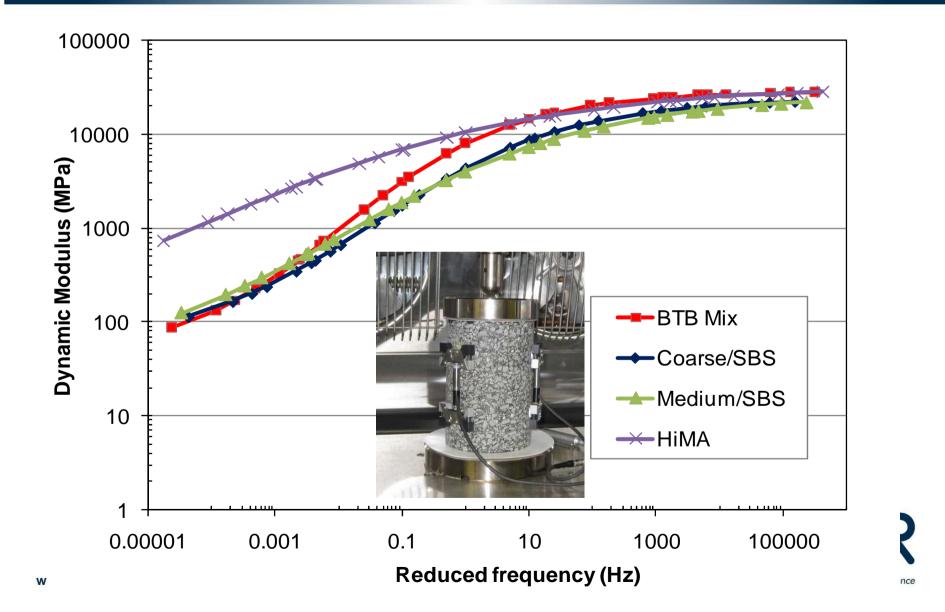
Pretoria, 8 & 9 November 2011

Erik Denneman

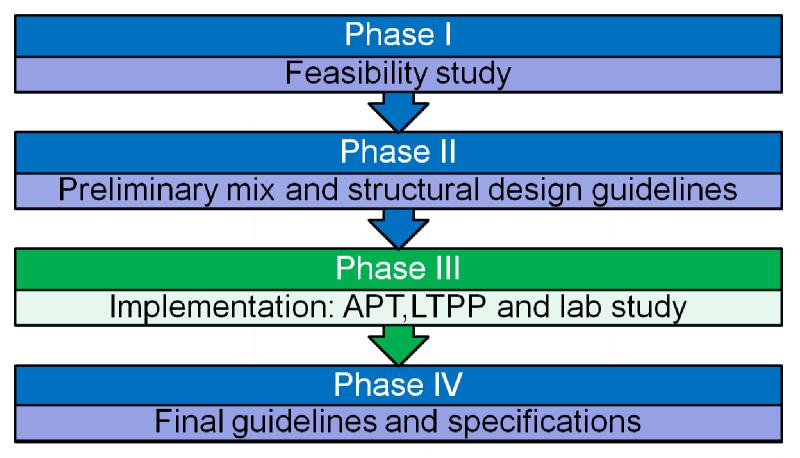
Outline

- HiMA
- Description of trial site,
- Mix design,
- Pavement design

High Modulus Asphalt ?


Origin: France early 90s "Enrobés à Module Elevé" (EME)

Typical characteristics:


- High binder content \approx 6% by mass of aggregate,
- Hard binder: Pen 10-25,
- Low air voids content,
- High Modulus > 14 GPa at 15°C, 10 Hz,
- High resistance against permanent deformation,
- Good fatigue resistance,
- Impermeable,
- Increased mixing temperature.

Background: The properties of HiMA

Background: Structure of SABITA T² project 5-19

Performance related mix design

Property	Test	Method	Performance requirements				
			HiMA	base	HiMA binder course		9
			course				
			Class 1	Class 2	Class 1	Class 2	Class 3
Workability	Gyratory	ASTM	≤ 6.3%	≤ 3.8 %	3.2 to 6.3 % for D = 10, 2.5 to 5.7 % for D = 14		
	compactor, air	D6926					
	voids after 100						
	gyrations						
Moisture	Modified	ASTM	Refer	Refer	Refer	Refer	Refer
sensitivity	Lottman	D4867	Table	Table	Table	Table	Table
			10	10	10	10	10
Permanent	RSST-CH,	AASHTO	≤ 1.7%	≤ 1.7%	≤ 2.3%	≤ 1.7%	≤ 1.1%
deformation	55℃, 30 000	320	strain	strain	strain	strain	strain
	reps						
Dynamic	Dynamic	AASHTO	≥ 14	≥ 14	≥ 9 GPa	≥ 14	≥ 14
modulus	modulus test at	TP 62	GPa	GPa		GPa	GPa
	10 Hz, 15℃						
Fatigue	Beam fatigue	AASHTO	≥ 330	≥ 430	≥ 360	≥ 330	≥ 330
	test at 10 Hz,	T 321	με for	με for	με for	με for	με for
	10℃, to 70%		10 E ⁶	10 E ⁶	10 E ⁶	10 E ⁶	10 E ⁶
	stiffness		reps	reps	reps	reps	reps
	reduction						

Implementation

7-19

home

T pending...

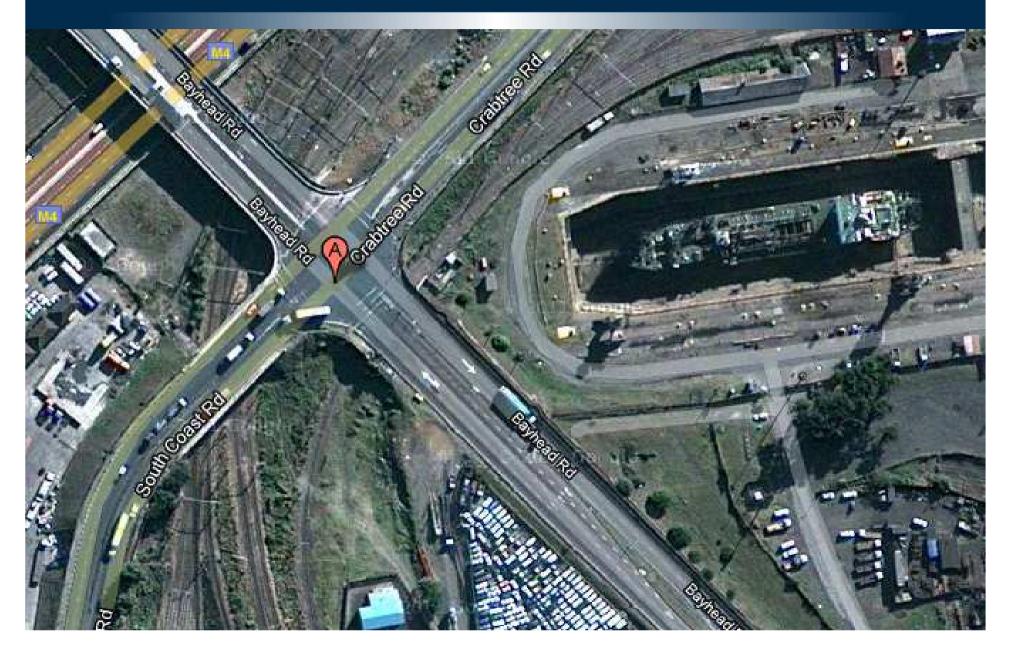
lgnore him.

22 7 2005

© CSIR 2011

Implementation

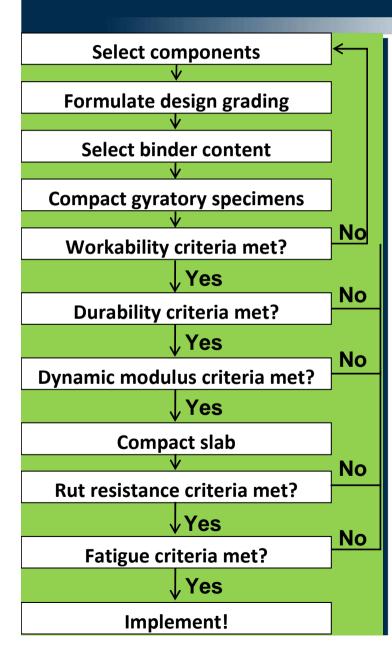
Mix designs prepared for Cape Town
international airport and OR Tambo



South Coast road Durban

Trial section

Trial section


ETHEKWINI MUNICIPALITY

- Road owned by eThekwini municipality,
- Major access road for DBN harbour,
- Frequent maintenance to pavements required,
- Road too busy and constricted to use concrete,
- Estimated number of standard axels: 8000 per lane per day (60 Million E80s in 20 years),
- CSIR tasked by SABITA to provide implementation advice.

Interim guide: Performance related mix design 11-19

- Design process similar to what is now proposed for general asphalt design in SA,
- Direct link between mix design and pavement performance,
- Requirements set for SA test methods:
 - Workability,
 - Durability,
 - Stiffness,
 - Rut resistance,
 - Fatigue.

Mix Design

- Interim design guide used to develop mix,
- Trial blends developed at National asphalt
- Mix includes 20% Reclaimed Asphalt Pavement (RAP),
- 10-20 penetration grade binder,
- Aggregate packing optimized,
- Several iterations to optimise design,
- Relatively low binder content to optimise permanent deformation resistance.

Aggregate properties

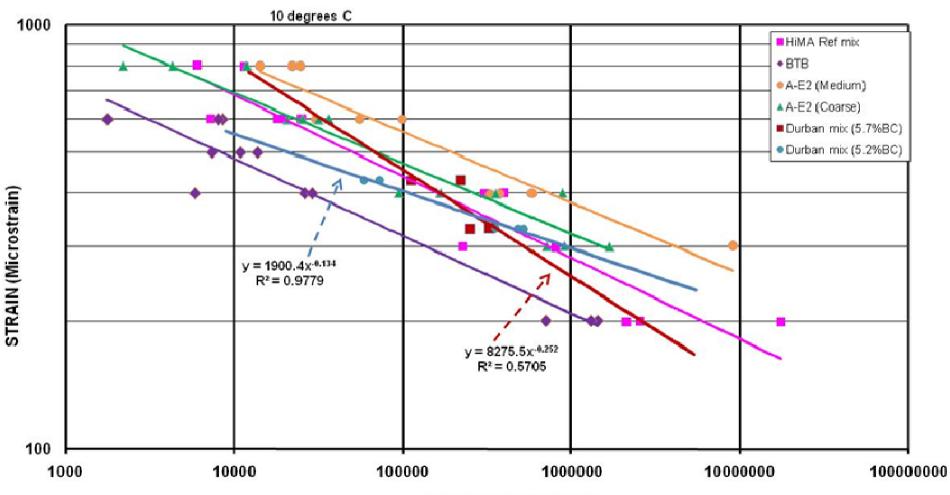
Property	Test	Method	Design	Interim guide
Hardness	Fines aggregate crushing test: 10 %FACT	TMH1, B1	303	$\geq 160 \text{ kN}$
	Aggregate crushing value ACV	TMH1, B1	13.3	\leq 25%
Particle shape & texture	Flakiness Index test	SANS 3001	≤13.1	≤ 25
	Particle index test	ASTM D3398	-	>15
	Polished stone value	SANS 3848	N/A: base course	>50
Water absorption	Water absorption coarse aggregate (>4.75mm)	TMH1, B14	\leq 0.4	≤ 1.0 %
	Water absorption fine aggregate	TMH1, B14	\leq 0.8	\leq 1.5 %
Cleanliness	Sand equivalency test	TMH1, B19	68	\geq 50

Binder properties

Test method Unit Result for Property Penetration grade binder 10/2015/25 20/30Before RTFOT Penetration at 25 °C EN 1426 22 10-20 15-25 20-30 0.1 mm Softening point °C EN 1427 58-78 55-71 62.2 55-63 Viscosity at 60 °C EN12596 Pa.s >700 >550 >440 2375 After RTFOT Increase in softening point EN 1427 °C 5.4 < 10< 8 < 8 Retained penetration % EN 1426 72.7 > 55 > 55 π. Mass change % < 0.5< 0.5 0.066

	HiMA base course			HiMA binder course		
	Class 1	Class 2				
D (mm)	10,14,20	10,14	20	10	14	
$P_{b \min} \rho = 2.65 \ g/cm^3$	3.8	5.1	5.0	5.2	4.9	
$P_{b \min} \rho = 2.75 \ g/cm^3$	3.8	4.9	4.9	5.0	4.8	
Richness modulus K	2.5	3.4	3.4	3.5	3.3	

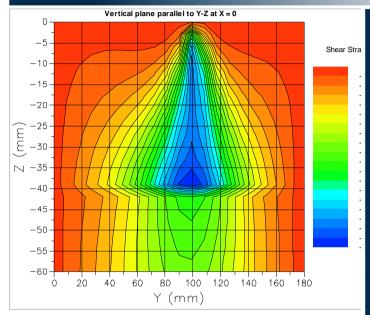
Table 4: Binder properties

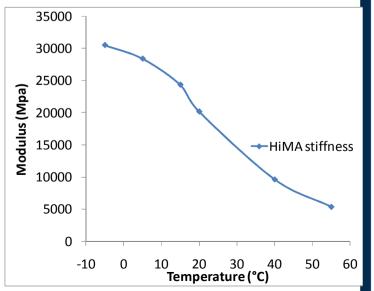

Performance related tests: results

Property	Test	Method	Design bin	der content	Interim Performance requirements	
			5.2%	5.7%	Class 1	Class 2
Workability	Gyratory compactor, air voids after 45 gyrations	ASTM D6926	2.9%	4.4%	≤ 10%	$\leq 6\%$
Moisture sensitivity	Modified Lottman	ASTM D4867	0.77	0.77	0.7	0.7
			0.24 %	1.83%		
Permanent	RSST-CH, 55°C,	AASHTO	(slab)	(slab)	$\leq 1.1\%$	$\leq 1.1\%$
deformation	5 000 reps	320	0.18	0.6%	strain	strain
			(gyratory)	(gyratory)		
Dynamic	Dynamic modulus	AASHTO	24.4 GPa	23.5 GPa	≥ 14	≥ 14
modulus	test at 10 Hz, 15°C	TP 62	24.4 GPa	25.5 GPa	GPa	GPa
						$\geq 10^6$
	Beam fatigue test at 10 Hz, 10°C, to 70% stiffness reduction	AASHTO T 321	66 500	165 905		reps
Fatigue			@430 με	@430 με		@430
						με
					$\geq 10^6$	
			752 900	457 560	reps	
			@310 με	@310 με	@310	
					με	

Permanent deformation

8.0% 7.0% Permanent strain [%] 6.0% 5.0% 4.0% 3.0% 2.0% 1.0% 0.0% 1 0 0 0 2 0 0 0 3 0 0 0 5 0 0 0 0 4 0 0 0 Load repetitions — BTB 1 55°C - Coarse AE2 55°C — Medium AE2 55°C - Medium 60/70 55°C — HiMA reference - BRASO 55°C Design 5.7 Design 5.2

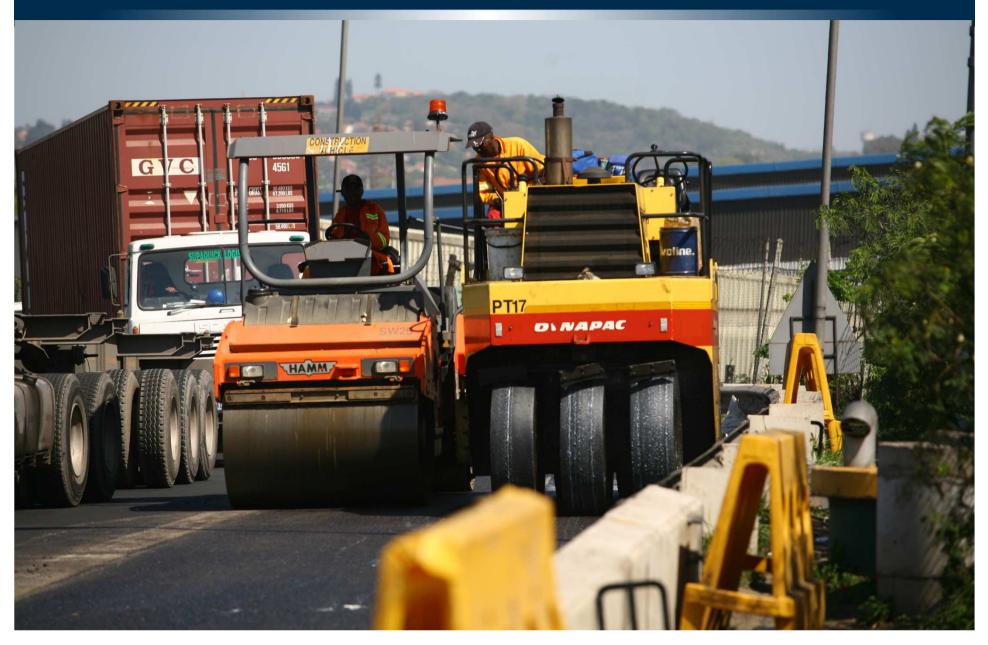



17-19

Comparison of strain-fatigue relationship to 70% stiffness reduction

Number of load Cycles

Structural design



- ThermalPADS Pavement temperature prediction software used,
- ME-PADS used to predict fatigue (conservative
- Use of SAPDM type models for rutting prediction,
- Use of SAPDM approach to determine stiffness of HiMA at combination of loading speed and temperature,
- Preferred option: Two 80 mm HiMA layers, with 30 mm Stone Mastic Asphalt (SMA) surfacing,
- Predicted life of HiMA base layers >100 Million standard axels.

