

RPF November 2010: Progress Report on the SAPDM

ME design of Flexible Pavements: **Update of the ME design method and revision of** $\mathcal{M}e$ - **PADS**[®]

H L Theyse

TRH4 revision 1994-95

Use existing research from 1970s to late 1980s to update the mechanistic-empirical design method for flexible pavements

Summary published at TRB in 1996

Late 1990s, early 2000s implementation in software packages

 $\mathcal{M}e$ -PADS[®], Rubicon

More users – more questions – less answers

Background (continued)

CAPSA'04

Jooste highlighted problems especially with models used for unbound material Some research already initiated at CSIR

RPF task group 2005

Framework for revision of the design method SANRAL stepped forward with funding CAPSA'07

Research plan presented – Godzilla was born

Current status

SANRAL SAPDM project started in 2008 Godzilla alive and well Some progress made, especially on modelling unbound material

CSIR software

Time for an official update of the ME design method for flexible pavements
Deliver update in *Me*-PADS®
Target for launch – CAPSA'11
Only an interim solution
Final solution under SANRAL project

Planned changes

- HMA fatigue
 - Unchanged (for now)
- Unbound base and subbase layers
 - Effective stress analysis
 - Shear strength related to engineering properties New plastic strain damage model
 - Stabilised layers
 - Cemented
 - Effective fatigue damage model
 - Crushing failure damage model
 - New shear strength properties with plastic strain damage model

Planned changes (continued) SiR

- Stabilised layers
 - Foam and emulsion
 - Effective fatigue
 - Plastic strain damage models

Planned changes (continued) SiR

Subgrade

New critical parameter

New permanent deformation model

Half-axle tyre loads

Unbound material: Subgrade

ROADS AGENCY

Dormon and Metcalf vertical strain criterion

"First, calculation of vertical compressive strain in the subgrade for several different sections in the AASHO test indicated that a compressive strain of 6.5x10⁻⁴ was associated with 10⁶ applications."

"The AASHO test also provided information by which the effects of different wheel loads of mixed traffic could be weighted. This relationship, shown in Figure 6 led to the development of the wheel load weighting curve in Figure 7. Subsequently, the compressive strain values previously assigned to different wheel loads were plotted according to their equivalent numbers as shown in Figure 5."

THE R. P. LEWIS

Unbound material: Subgrade

- MDD data from HVS tests
 - Elastic deflection
 - Permanent displacement

TAXABLE INCOME.

Unbound material: Subgrade PD

Vertical strain

Subgrade permanent deformation at 200 000 load

MDD vertical strain (microstrain)

Subgrade deflection

R² ~ 0.77 SEE ~ 0.38 R² ~ 0.98 SEE ~ 0.35

 $\log N = I - m \log (SD) - offset$

Effective

stress

Unbound material: Residual compaction stress

Observed by Dehlen (1959) Static equilibrium model by Uzan (1980s) Design relationship derived from static equilibrium

Unbound material: Suction pressure

- Suction pressure approximation model (Theyse, 2008)
 - Predictive design model SANRAL project Validation testing and recalibration - WITS

Predictive Suction Pressure Model

Unbound material: Shear strength model

- Data from Theyse, 2008
- Model developed under SANRAL project
- Predictive shear strength model
 - Grading modulus and P_{0,075}
 - Liquid limit

Linear shrinkage

Unbound material: Plastic strain damage model

- Data from Theyse, 2008
- Model developed under SANRAL project
 Stress Ratio
 - Volumetric density
 - Degree of saturation

$$\log N = I_0 - \frac{I_1 - I_0}{1 + I_0 / I_1 e^{7 \left[\frac{S}{VD}(SR) - 0.35\right]}}$$

Software implementation

THE SOUTH AFRICAN NATIONAL

ile			
✓ G1 on C3 - arid - coarse File Pavement □ Layer Input □ Layer 1 □ Layer 2 □ Layer 4 □ Wheel loads □ Evaluation Points □ Contour plot □ Profile plot	Pavement Structure Layer Input Loads and Evaluation Points Evaluation Points Main pavement layer Layer 2 Image: Construction Points Evaluation Points Material code G1 Image: Construction Points Image: Construction Points Engineering Information Base Image: Construction Points Image: Construction Points Layer classification Density specification type Volumetric Image: Construction Points Density specification (%) 86 Image: Construction Points Image: Construction Points Compaction information 2.836 Image: Construction Points Image: Construction Points Apparent relative density 2.836 Image: Construction Points Image: Construction Points Mod AAHSTO max.dry density 2300 Image: Construction Points Image: Construction Points Field conditions Density Moisture content Image: Construction Points Image: Construction Points VD 86 S 38.4172046439 Image: Construction Points Image: Construction Points	Contour Plot Profile Plot Resilient respond paramete Resiliant modulus (MPa) Poissson's Ratio Mohr Coulomb shear streng VD 86 S 38.41720464: 4000 (a) 3000 S 2000-	Phase 1 Phase 2 450 225 0.35 0.35 0.35 0.35 pth parameters ield conditions Cohesion (kPa) 88.647976295 Friction angle (*) 54.809976165 Update plot
	Grading and Atterberg indicators Sieve Size % Passing 63 100.00 53 100.00 37.5 100.00 37.5 100.00 13 71.00 13.2 59.00 4.75 36.00 2 23.00 0.425 11.00 0.025 4.00	Damage models Plastic strain $\log N = I_0 - \frac{1+I_0}{1+I_0}$	$I_{1} = I_{0}$ $I_{1} = I_{0}$ $I_{1} = I_{0}$ $I_{1} = I_{0}$ $I_{1} = P^{T} \left[\frac{S}{VD} (SR) = 0.35 \right]$ $I_{1} = Define$

Closing statements

ME design inputs for unbound structural layers Input data

Resilient response parameters

Grading, Atterberg limits, density, moisture content

Model not perfect but much better than previous model

Separate models required for natural gravel

Subgrade design

Depends on resilient response parameters Working on recommended M_r values

Models for HMA and stabilised material being developed/refined under SANRAL project

How do you get your hands on the new method? *Me*-PADS[®] launch at CAPSA'11

After the launch SAMDM'96 will be declared dead and no longer valid

Software used to be for free, probably still will be BUT

Only available at CSIR/PMC course presented annually