
Draft Protocols for MMLS3 Applications for Evaluating Rutting Deformation and Impact of Moisture under trafficking

> Status Report to RPF08 November 12 Pretoria

Members of MMLS3 RPF Protocol Task Team

Dennis Rossmann - Sanral **Derick Pretorius - Arcus Gibb** Erik Denneman - CSIR Elzbieta Sadzik - Gauteng Pieter Molenaar - SSI Eben de Vos - ITT **Representatives from SRT and Roadlab** Interested persons by co-option **Corresponding international members: Steve Emery and Intl. MMLS3 users** Fred Hugo - Chair and Coordinator email: fhugo@sun.ac.za

MMLS3 studies in global perspective

Historic brief - Westrack Full-scale - MMLS3 comparison site

Westrack Full-scale - MMLS3 comparison site (close-up)

Westrack Field validation

QuickTime™ and a decompressor are needed to see this picture.

NCAT Test Track Alabama US

NCAT test track with 10m ESAL truck trafficking over two years

HVS and MMLS3 on R80 Pta West

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

Close-up of MMLS3 set-up

QuickTime[™] and a decompressor are needed to see this picture.

MMLS3 rutting vs HVS Rutting R80 Pretoria

QuickTime^{rw} and a decompressor are needed to see this picture.

Rutting due to Lateral Wander MMLS Trafficking on Rut Resistant Mix on R80

Namibia Field Application LTPP comparable to MMLS3 Performance Prediction

Field testing in Namibia

Rut after wet field testing ¹³

Instruction for Specimen Preparation and Trafficking									
Compaction Preparation									
	Lab Field								
Н	G	R	R	R	R	R			
Hammer Gyratory Roller Roller Roller									
Cylindrica	al mould	Slab	Slat	0	Slab				
Trafficking									
	Channe	lized	Wander	Channelized	Wander				

Instruction for Specimen Preparation and Trafficking (cont)

Test Co	nditioning				Temp C		Temp C
Moistur	e			Dry		Wet	
o Surface		Inundate	e/Spray				
 ○ Internal* 							
By inund	dating	Y	N				
* By me	ans of suction?	Y	N				
Test Te	Test Temperature						
Artificial	Heating	Y	N				
o Surface							
 Minus 17mm 	 Minus 25 mm 						
o Minus 34mm	 Minus 50mm 						

Instruction for Specimen Preparation and Trafficking (cont)									
Trafficking Wheel Load				kN	2.7	2.7 2.9			
Tyre	Pressure @ 25C			kN/m²	700	750	800		
Tyre Tread (Std Diamond) Other				Diamond	Y N				
Assumed Contact Stress				kN/m²					
Axle Load Applications /h 1800 2400 3600 7200			Select	1800 2400 3600 7200		1800 2400 3600 7200			
Airport	SteepGrd/ Intersections	Rolling grd & >>Truck	Highway Speed		7200				
Boun	ndary Conditions						-		
 Compacted HMA+ Tack coat (Slab - Field/Lab) 					Y	/	N		
 Metal mould+emulsion interface (Test bed in Lab) 					Y	/	N		

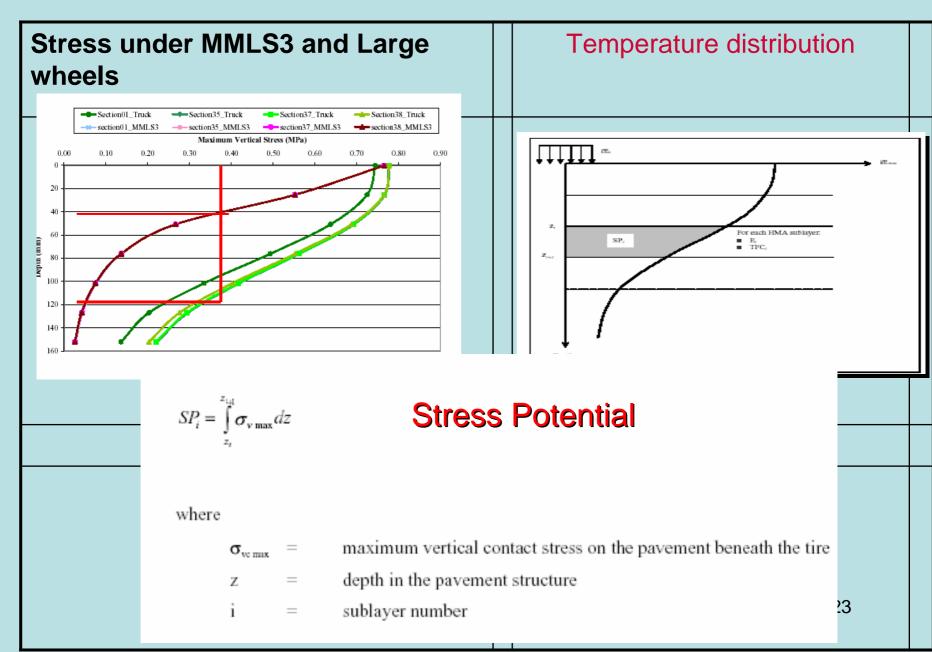
Proposed Empirical Protocols for Acceptable Rutting Performance HMA >90mm									
	Fie	ld							
Max Rutting under Trafficking to 100k axles (mm)									
	H G R R R R R								
Hwy Speed	2.5	2.5	3	3	3.2	3	3.2		
>>Truck	2.5	2.5	3	3	3.2	3	3.2		
StpGrd/Intersect	2.1	2.1	2.5	2.5	2.7	2.5	2.7		
Airport apron/Taxiway	1.8	1.8	1.8	1.8	2.0	1.8	2.0		
Traffic Mode	С	С	С	С	W	С	W		

₹l

Proposed Empirical Protocols for Acceptable Rutting Performance HMA >75mm									
	Field								
Max Rutting under Trafficking to 100k axles (mm)									
H G R R R R R									
Hwy Speed	2.2	2.2	2.6	2.6	2.8	2.6	2.8		
>>Truck	2.1	2.1	2.5	2.5	2.7	2.5	2.7		
StpGrd/Intersect	1.9	1.9	2.3	2.3	2.5	2.3	2.5		
Airport apron/Taxiway	1.5	1.5	1.8	1.8	2	1.8	2		
Traffic Mode	С	С	С	С	W	С	W		

Proposed Empirical Protocols for Acceptable Rutting Performance HMA 60 mm									
		Field							
Max Rutting under Trafficking to 100k axles (mm)									
	Н	G	R	R	R	R	R		
Hwy Speed	2	2	2.4	2.4	2.6	2.5	2.4		
>>Truck	2	2	2.4	2.4	2.6	2.5	2.4		
StpGrd/Inters	1.6	1.6	2	2	2.2	2	2.2		
Traffic Mode	С	С	С	С	W	С	W		

Proposed Empirical Protocols for Acceptable Rutting Performance HMA 40 mm									
		Field							
Max Rutting under Trafficking to 100k axles (mm)									
	H G R R R R R								
Hwy Speed	2.5	2.5	2.5	2.5	2.7	2.5	2.7		
>>Truck	2.3	2.3	2.3	2.3	2.5	2.3	2.5		
StpGrd/Inters	2	2	2.1	2.1	2.3	2.1	2.3		
Traffic Mode	С	С	С	С	W	С	W		


Points to understand regarding Protocols

- Vertical stress, wander, temperature and frequency, have to be taken into account
- Westrack asphalt was 125 150 mm and the defined limits for rutting was related to10m E80s over 2 years.
 - South African applications have been adapted to local conditions relative to traffic and thickness
 - Evaluation of pavement performance under traffic with time after MMLS testing
- MMLS3 rutting performance comparable in terms of ranking and extent

Quantitative Analysis of Rutting

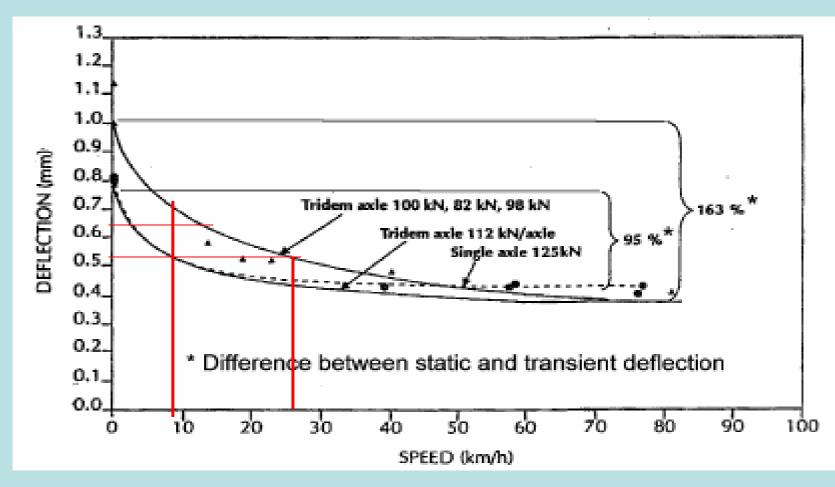
- Theoretical rut ratios (TRR) assumed proportional to vertical stresses in *pavement layers based on contact stresses*
- Corrections are made to account for differences in temp, age and load frequency (speed)
- Field rut ratios (FRR) are compared at similar trafficking axles with allowance for wander
- $\mathbf{TRR} / \mathbf{FRR} = 1$

Analysis of MMLS3 Performance

Rutting Performance Ratios and Field Rutting Ratios

RPR = Rutting Potential Ratios

FRR = Field Rutting Ratio

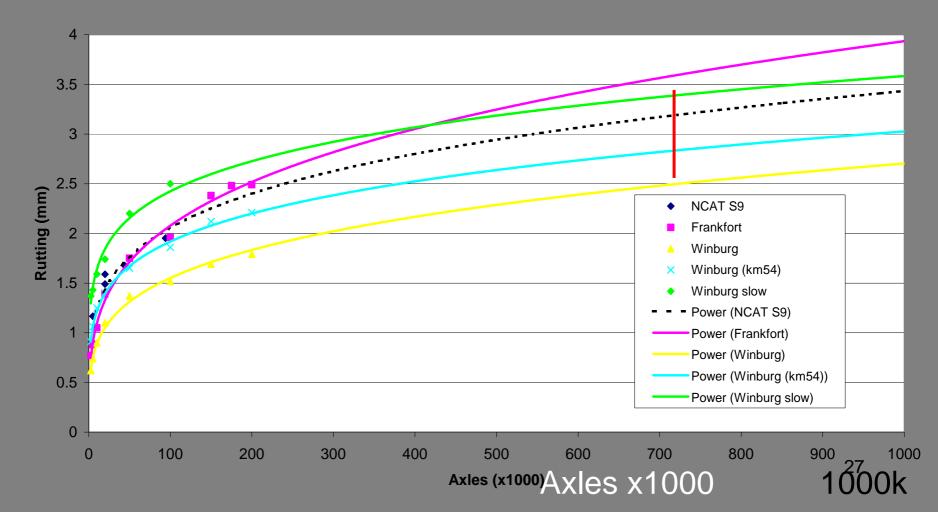

$$RPR = \frac{\sum_{i=0}^{n} TFC_i \times SP_i^{MMLS3}}{\sum_{i=0}^{n} SP_i^{Tracks}}$$

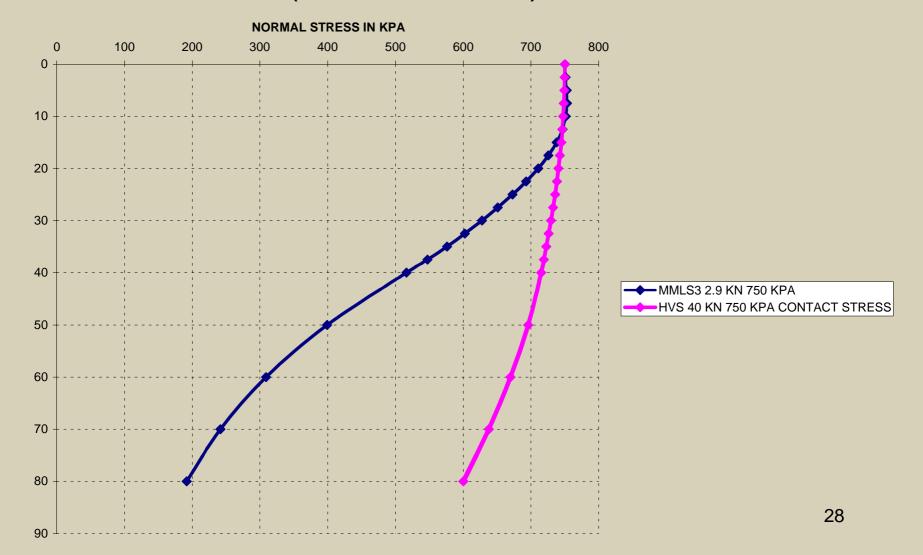
where
n = number of HMA sublayers

$$\begin{split} FRR &= \frac{\left(RD_{100k}^{MMLS3}\right)_{HMA \ layer}}{\left(RD_{100k}^{Tnucks}\right)_{HMA \ layer}} \\ &= \frac{\left(RD_{Top \ of \ HMA \ layer} - RD_{Bottom \ of \ HMA \ layer}\right)_{100k}^{MMLS3}}{\left(RD_{Top \ of \ HMA \ layer} - RD_{Bottom \ of \ HMA \ layer}\right)_{100k}^{Tnucks}} \end{split}$$

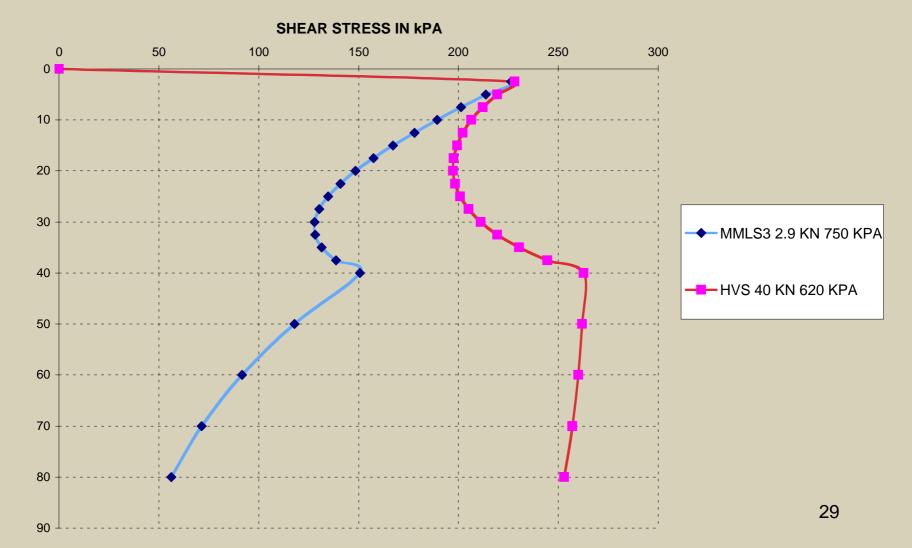
Thus Comparative Performance:

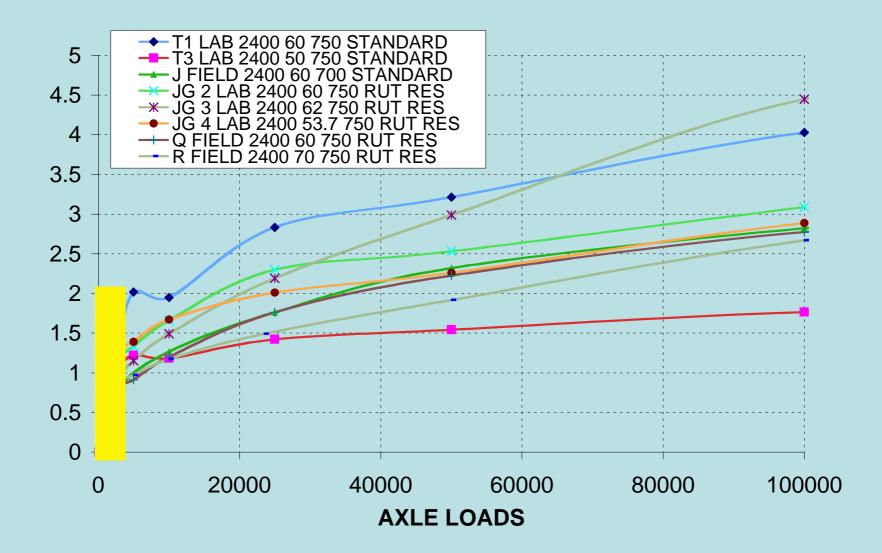
- Similar Distress characteristics
- Related rutting performance with consideration of
- Scaled and Full-scale stress and strain at similar
- temperature, age and load frequency

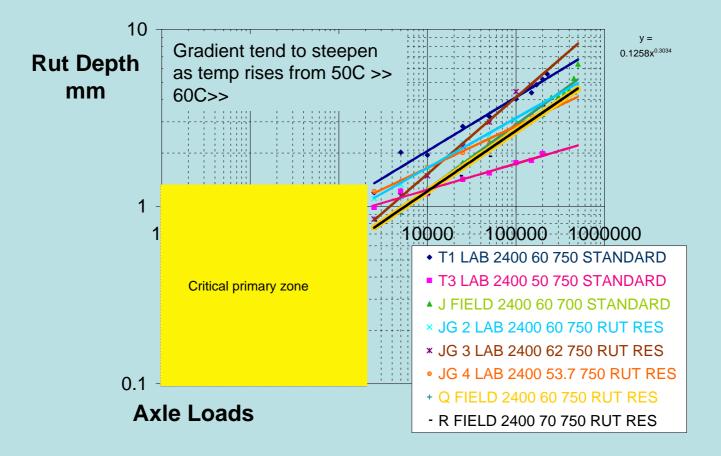

Deflection vs. speed under full-scale truck traffic

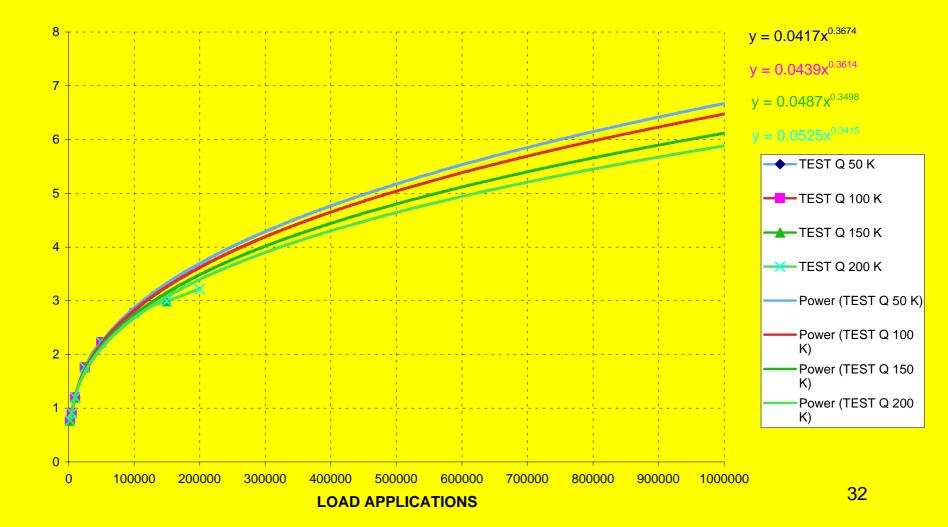

Comparitive MMLS3 rutting @ different trafficking speeds in Winburg SA and NCAT

Rutting mm 4mm @ 1000k


Fig. 9: Comparative summary of results


VERTICAL CONTACT STRESS PROFILES MMLS3 vs.HVS @ 750 kPa contact stress– 91% (R80 Pta West)


SHEAR STRESS PROFILES MMLS3 vs. HVS @ 750 kPa contact stress–75% (R80 Pta West)


MLS Comparative Rutting Performance of Standard and Resistant Mixes in the Laboratory and Field

MMLS Comparative Studies of Standard and Rut Resistant Mixes in the Laboratory and Field

MMLS3 Data Processing (R80 Pta West) Extrapolation of Rutting Data: 0-50k; 0-100k; 0-150k; 0-200k = 12% difference

Recent Conclusions from MMLS3 APT Study in So Africa

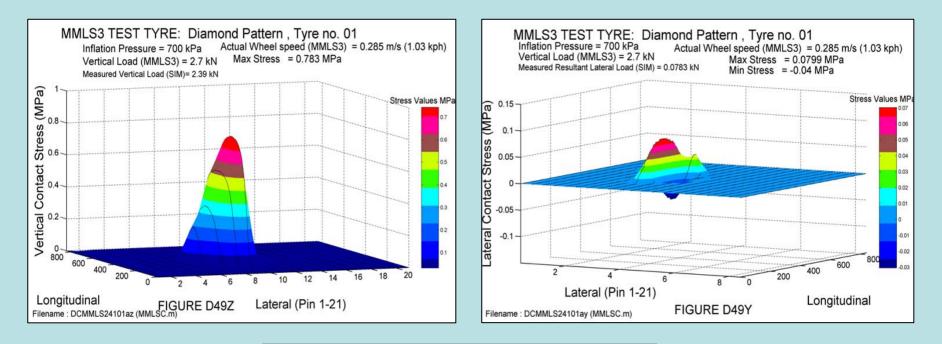

- 1. Field and lab MMLS have comparable Rutting Performance if conditions are similar in terms of temperature, contact stress and load frequency
- 2. Rutting in terms of downward deformation and upward heave under MMLS trafficking is similar in field and lab
- 3. Effect of Lateral Wander trafficking appears to be severe in thin asphalt layers

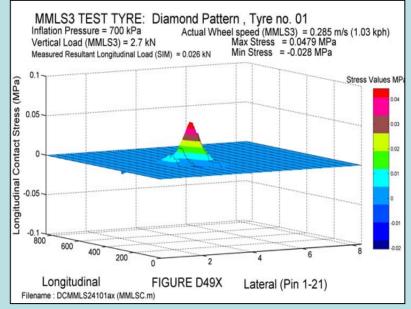
Points to understand regarding Protocols

- 1. Environmental impact
 - Temperature
 - Rainfall
 - Aging geographic location
- 2. Traffic volume
- 3. Traffic speed
 - Gradient
 - Elevation
- 4. Wheel load and tyre pressure
- 5. Pavement structure, materials and construction

MMLS3 Data Processing (R80 Pta West) Rutting Profiles - Heave (left and right@ 800mm)

TEST Q POSITION 800 - 2.9 kN 750 kPa 2400 per Hour


MMLS3 Data Processing (R80 Pta West) Rutting vs. Heave (left and right)


CUMMALATIVE RUTTING TEST Q - 60 C 2.9 kN 2400 750 kPa RUT AND HEAVE

Lab Testbed

Cores after MMLS3 testing

QuickTime™ and a decompressor are needed to see this picture

> QuickTime™ and a decompressor are needed to see this picture

Key to application of the MMLS3

Understanding APT:

- distress mechanisms
- performance related factors

Salient Features of MMLS3 Testing that need to be borne in mind

Pins for measuring deformation below layer #1

Applications by MMLS3 Users

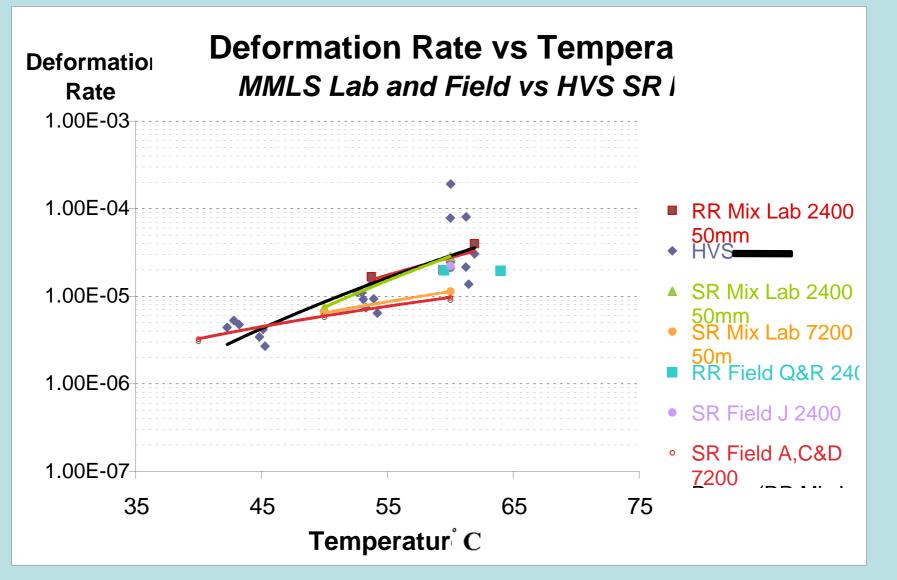
Output/Variables/ Data interpretation protocols

Variables

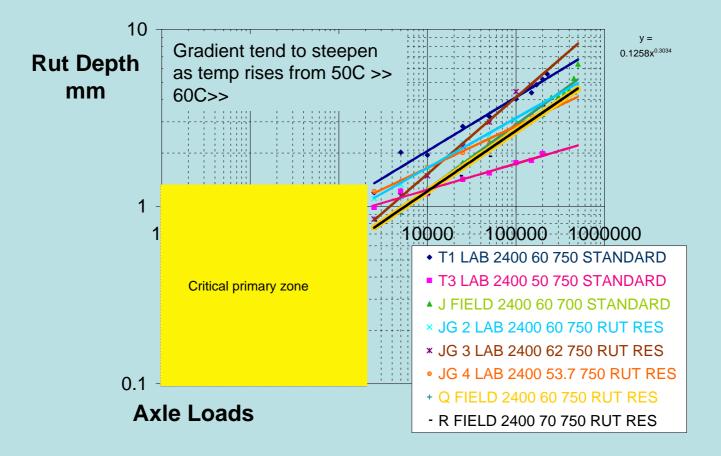
- Wander
- Loading
- Speed
- Contact stress
- Conditioning
 - ≻Heat
 - ≻Ambient
 - ≻Cooled
 - ≻Wet/Dry
 - ≻Ageing

Westrack Field validation

QuickTime™ and a decompressor are needed to see this picture.


MMLS3 with heating ducts

QuickTime[™] and a decompressor are needed to see this picture.


Combined Heating and Cooling Unit (-10C to 70C)

Comparative Performance of Standard and Rut Resistant Mixes Under MMLS Trafficking vs. HVS Trafficking of Standard Mixes


MMLS Comparative Studies of Standard and Rut Resistant Mixes in the Laboratory and Field

Rutting and Shear Deformation due to Lateral Wander MMLS Trafficking on Rut Resistant Mix

Comparative Performance of Standard and Rut Resistant Mixes Under MMLS Trafficking vs. HVS Trafficking of Standard Mixes

