Overview of Ben Schoeman CRCP Accelerated Pavement Test

Eben de Vos 9 November 2011 CSIR International Convention Centre, Pretoria

Engineering a brighter future.

www.bks.co.za

Outline

- 1. Background
- 2. Test particulars
- 3. Pavement responses
- 4. Diagnostic Evaluation
- 5. Falling Weight Deflectometer
- 6. Application of Test Findings

1.1 Background

- Research was conducted as part of GFIP Work Package C: Rehabilitation and capacity upgrade of the Ben Schoeman Freeway
 - Capacity upgrade to ensure a Level of Service D for next 10 years
 - Rehabilitation to ensure a 10-year maintenance free period
- Research was initiated by BKS, undertaken in co-operation with SANRAL
- Testing was conducted by the CSIR using the HVS
- Research objectives:
 - 1) Characterise CRCP performance in terms of standard measures
 - 2) Contribute to the current body of knowledge through the development of a performance model for the test section

2.1 Test Section

Layer Thickness (mm)	Material	Year Constructed
185	Continuously reinforced concrete	1987
30	Open-graded asphalt overlay	1973
30	Continuously-graded asphalt overlay	1969
200	G1- Crushed stone base	1969
150	C2- Stablised gravel subbase	1969
150	G7 – Selected subgrade	1969
150	G9 – Selected subgrade	1969

2.2 APT Test Plan

Characteristic	Description	Start	Stop	
Test Duration	147 days	17 December 2009	12 May 2010	
Trafficking mode	Canalised	0	2 750 200	
Temperature control	Ambient	0	2 750 200	
Loading direction	Bi-directional	0	2 750 200	
	40 kN	0	40 202	
Trafficking load	60 kN	40 202	80 453	
Two 12R22.5 tyres	80 kN	80 453	1 730 571	
	100 kN	1730 571	2 750 200	
Measurement interval	30 minutes			
	40 and 60 kN under 80 kN loading	80 453	1 730 571	
Test load at 0500 h and 1300 h	40 and 80 kN under 100 kN loading	1 730 571	2 750 200	

2.3 Instrumentation and Environmental Conditions

- Joint Deflection Measuring Devices
 Vertical (10) / Horizontal (3)
- No Multi-depth Deflectometer
- Thermocouples
 - Surface and at 175 mm
- Weather station
- Watering cycle: l/h
- 40 k wet 5

3.1.1 Surface Deflection

800-

700

Maximum Deflection (micron) 000 - 0

400-

100

0

0

Deflection profiles under dynamic loading

Deflection at all load levels, including standard test loads

1000000

JDMD 6

500000

And Interim Market

1500000

Load Applications

2000000

JDMD 9

2500000

engineering a brighter future

Vertical line – 1.73 mil improved load from 80 kN to 100 kN

Visible variation due to twice daily standard test loads of 40 kN

3.2.1 Relative Movement

Determined from JDMD deflection data

When loading wheel was

completely on one side of the crack

>Incorporated different tyre

print sizes

Variation is due to twicedaily standard test loads

3.2.2 Relative Movement

Comparison based on equivalent environmental conditions

Average ratio between relative movement before and after = 2

3.3.1 Permanent Deformation

> Cyclical nature: warping and curling caused by daily environmental fluctuations

4.1 Visual Surface Evaluation

Spalling at Crack 4

Cracks 1,2,3 and 5 intact

No pumping of material

4.2 Diagnostic Investigation

- > 50 mm core up to depth of 200 mm
- ➢ Filled with tinted epoxy
- > 150 mm core up to 300 mm

Shoulder Side

4.3 Diagnostic Evaluation: Crack Widths

Position of	Transverse crack number				
measurement	1	2	3	4	5
Surface of core	0.840	1.080	1.430	0.730	0.630
Side of core -top	0.535	0.290	0.980	0.365	0.440
Side of core -middle					
	0.220	0.215	0.515	0.265	0.115
Side of core - bottom					
	0.080	0.215	0.510	0.155	0.105

Crack widths decrease with depth Crack 3: greatest crack width Crack 4: spalled crack

engineering a brighter future

4.4 Diagnostic Evaluation: Interface

Deterioration of the CRC/HMA interface

- Stripping of the open-graded asphalt overlay
- > Loss of fines, not visible at the surface

5.1 FWD Deflection

➤FWD before and after APT

Time Lapse between FWD after APT and HVS = 5 months

➤Temperature and time of day comparable

5.2 FWD: Edge Loading and Backcalculation

HVS = edge loading FWD = internal loading

Modulus of subgrade reaction indicate test section condition:

- 20th percentile of N20/N21 before start of APT,
- 7th percentile after APT

6. Application of Test Findings

Standard measures were used to develop a pavement performance model

Two predominant failure mechanisms

- 1. Loss of load transfer efficiency across a crack
- 2. Deterioration of the support structure

These mechanisms manifest in performance deterioration

Questions / Discussion

