

# Development and Implementation of a Performance Grading System for South African Binders

#### **Update from RPF PG Binder Working Group**



Pretoria, South Africa 11<sup>th</sup> November 2015



### **Salvador Dali**







Innovation for Quality and Value - - - 16 - 19 August 2015 - - - Sun City - South Africa - - - -----

# **Resolution 1**

The conference charges Sabita to convene an international binder expert group meeting in 2015, to process the PG concepts developed at CAPSA 15, for the purpose of formulating a PG specification for trial implementation by SANRAL

(August 2015)



# **Key questions**

- What are we aiming to achieve with PG specs?
- What is the benefit to industry?
- An entirely fundamental, theoretical specification is unlikely... Healthy dose of empiricism?
- Implementable protocols for Specs?
  - Product "fitness for purpose"
  - Site QC

### **Primary Objectives**

Traffic

Climate

Durability

- Binder blind
  - unmodified
  - PMBs

tellenbosch

- non-homogenous (bitumen rubber)
- Binder "fitness for purpose" in asphalt and seals
- Use DSR as extensively as possible
- Address all stages & conditions of usage:
  - Spraying, mixing and compaction
  - High temperature (permanent deformation)
  - Intermediate temperature (fatigue)
    - Low temperature (cracking)...if necessary



### The Franschoek Declaration 16 Oct '15



### **Clear Message**

### Get those thinking caps on!



#### SPEC IN THE KEP

# **Imperatives of PG Spec**

- Simplicity (protocols, operator training, time)
- Reliability (repeatability, reproducibility)
- Applicability (mirror reality, central and site lab?)
- Versatility<sub>1</sub> (binders: straight, mod, non-hom)
- Versatility<sub>2</sub> (range of temperatures, frequencies)
- Durability (ageing)
- Resource Economy (DSR + RV? + ?)
- Limits (ranking intervals vs limits<sub>upper/lower</sub>)



#### Ageing Simulation (STA & LTA)

 Standard PAV hopelessly underestimates field ageing e.g. 3 years equivalent not 10 yrs







### **PG Specification Framework**

|   |                                                                                          | Proposed Classification |     |     |           |     |     |     |     |  |
|---|------------------------------------------------------------------------------------------|-------------------------|-----|-----|-----------|-----|-----|-----|-----|--|
|   | Property                                                                                 | 58S                     | 64S | 58H | 64H       | 58V | 64V | 58E | 64E |  |
|   |                                                                                          | -22                     | -16 | -22 | -16       | -22 | -16 | -22 | -16 |  |
|   | Maximum pavement design temperature, T <sub>max</sub> (°C)                               | 58                      | 64  | 58  | 64        | 58  | 64  | 58  | 64  |  |
|   | Minimum grading temperature, T <sub>min</sub> (°C)                                       | -22                     | -16 | -22 | -16       | -22 | -16 | -22 | -16 |  |
|   |                                                                                          | Original binder         |     |     |           |     |     |     |     |  |
| * | G*/sin $\delta$ , 10rads/sec at T <sub>max</sub> , minimum                               | 1.0 1.0 N/A             |     |     |           |     |     |     |     |  |
|   | G*, δ, @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4) °C        | Report                  |     |     |           |     |     |     |     |  |
|   | Viscosity (Pa.s), 135°C, maximum                                                         | 3.0                     |     |     |           |     |     |     |     |  |
|   | Flash Point (°C), minimum                                                                | 230                     |     |     |           |     |     |     |     |  |
|   | Storage stability, Max % diff, $G_{T}^{*}$ and $G_{B}^{*}$ @T <sub>high</sub>            |                         |     |     | 10        |     |     |     |     |  |
|   |                                                                                          | RTFO binder             |     |     |           |     |     |     |     |  |
|   | Maximum Mass Change (m/m %)                                                              |                         |     |     | 1.0       |     |     |     |     |  |
|   | J <sub>nr</sub> (ASTM D7405) @ T <sub>high</sub> , maximum                               | 4.5                     | 4.5 | 2.0 | 2.0       | 1.0 | 1.0 | 0.5 | 0.5 |  |
| × | G*, δ, @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4)°C         | Report                  |     |     |           |     |     |     |     |  |
|   | Ageing Ratio, G* <sub>RTFOT</sub> /G* <sub>Original</sub> , maximum                      | 2.0                     |     |     |           |     |     |     |     |  |
|   | (10rads/sec)                                                                             |                         |     |     | 5.0       |     |     |     |     |  |
|   |                                                                                          |                         |     |     | PAV binde | r   |     |     |     |  |
|   | S(60s) at T <sub>min</sub> + 10°C , MPa, maximum                                         |                         |     |     | 300       |     |     |     |     |  |
|   | m(60s) at T <sub>min</sub> + 10°C, minimum                                               | 0.300                   |     |     |           |     |     |     |     |  |
|   | ΔT <sub>c</sub> ( <sup>0</sup> C), minimum                                               | -5                      |     |     |           |     |     |     |     |  |
| ★ | G*, $\delta$ , @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4)°C | Report                  |     |     |           |     |     |     |     |  |
|   | Ageing Ratio, G* <sub>PAV</sub> /G* <sub>Original</sub> , maximum<br>(10rads/sec)        | 6.0                     |     |     |           |     |     |     |     |  |

### Permanent Deformation: Creep and Recovery (MSCR)



J<sub>nr</sub> = Ave permanent shear strain (non-recov) per cycle Applied shear stress

### Findings of PG Spec Research





# Outcomes of Franschoek Meeting<sub>2</sub> Permanent Deformation DCR

**Dynamic Creep Recovery** 



| Industry Protocol    | // Plate @ τ = 0.1 & 3.2 kPa for 10<br>cycles each (measure last 5)<br>CSIR and AASHTO T350 methods |
|----------------------|-----------------------------------------------------------------------------------------------------|
| Trial Implementation | // Plate @ $\tau$ = 0.1 & 3.2 kPa measure 10 and 20 cycles                                          |
| Comments             | For standard traffic levels, $G^*/sin\delta$ should suffice, for unmodified binders                 |

# **Durability Cracking**



- Testing at IT and LT
- Parameters Consider R,  $\Delta T_c$ , G-R parameter,



### **Results of Bending Beam Rheometer**



### **Cracking: Glover-Rowe Parameter**



G\* Test Parameters @ T=15<sup>o</sup>C and Fr = 0.005 rad/sec

#### **Parameters for IT and LT damage**



**DSR Parameters:** R (Master Curve), G-R parameter (Black Diagram)

# R-value

- Easy to compute from single data points
- Place in Black space linked to R
- Cross-over frequency,
  VET, G-R or other
  parameters such as NCSU
  δ =45 all related to R-value
- Field performance shows cracking is related to R
- All interrelated via VEtime temperature functions (Rowe)



| Durab           | ility Cracking                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------|
|                 |                                                                                                         |
| Industry        | BBR test for S (60) and m (60)<br>$\Delta T_c min = -5^{\circ}C$                                        |
| Industry report | DSR //P @ Strain sweep G*, δ, @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4)°C |
|                 | Evaluate R, G-R parameter from DSR data                                                                 |

Photo: CSIR

### **PG Specification Framework**

|            |                                                                                          | Proposed Classification |     |     |            |     |     |     |     |
|------------|------------------------------------------------------------------------------------------|-------------------------|-----|-----|------------|-----|-----|-----|-----|
|            | Property                                                                                 | 58S                     | 64S | 58H | 64H        | 58V | 64V | 58E | 64E |
|            |                                                                                          | -22                     | -16 | -22 | -16        | -22 | -16 | -22 | -16 |
|            | Maximum pavement design temperature, T <sub>max</sub> (°C)                               | 58                      | 64  | 58  | 64         | 58  | 64  | 58  | 64  |
|            | Minimum grading temperature, T <sub>min</sub> (°C)                                       | -22                     | -16 | -22 | -16        | -22 | -16 | -22 | -16 |
|            |                                                                                          |                         |     | Ori | ginal bind | ler |     |     |     |
| $\star$    | G*/sin $\delta$ , 10rads/sec at T <sub>max</sub> , minimum                               | 1.0 1.0 N/A             |     |     |            |     |     |     |     |
| *          | G*, δ, @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4) °C        | Report                  |     |     |            |     |     |     |     |
| ★          | Viscosity Pa.s, 135°C, Pa.s, maximum                                                     |                         |     |     | 3.0        |     |     |     |     |
|            | Flash Point (°C), minimum                                                                |                         |     |     | 230        |     |     |     |     |
| X          | Storage stability, Max % diff, $G_{T}^{*}$ and $G_{B}^{*}$ @T <sub>high</sub>            |                         |     |     | 10         |     |     |     |     |
|            |                                                                                          |                         |     | R   | TFO binde  | er  |     |     |     |
|            | Maximum Mass Change (m/m %)                                                              |                         |     |     | 1.0        |     |     |     |     |
| $\star$    | J <sub>nr</sub> (ASTM D7405) @ T <sub>high</sub> , maximum                               | 4.5                     | 4.5 | 2.0 | 2.0        | 1.0 | 1.0 | 0.5 | 0.5 |
| $\star$    | G*, δ, @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4)°C         |                         |     |     | Report     |     |     |     |     |
| $\bigstar$ | Ageing Ratio, G* <sub>RTFOT</sub> /G* <sub>Original</sub> , maximum<br>(10rads/sec)      | 3.0                     |     |     |            |     |     |     |     |
|            |                                                                                          |                         |     |     | PAV binde  | er  |     |     |     |
| ★          | S(60s) at T <sub>min</sub> + 10°C , MPa, maximum                                         |                         |     |     | 300        |     |     |     |     |
| $\bigstar$ | m(60s) at T <sub>min</sub> + 10°C, minimum                                               |                         |     |     | 0.300      |     |     |     |     |
| X          | ΔT <sub>c</sub> ( <sup>0</sup> C), minimum                                               |                         |     |     | -5         |     |     |     |     |
| ×          | G*, $\delta$ , @ 0.05 to 20 rads/sec, at ([(T <sub>max</sub> -T <sub>min</sub> )/2]+4)°C |                         |     |     | Report     |     |     |     |     |
| $\star$    | Ageing Ratio, G* <sub>PAV</sub> /G* <sub>Original</sub> , maximum<br>(10rads/sec)        |                         |     |     | 6.0        |     |     |     |     |
|            | ★ DSR                                                                                    |                         | 🗙 E | BBR |            |     |     |     |     |

# Outcomes of Franschoek Meeting, DRENK REPRODUCTION & Construction

Spray, Pump, Mix, Pave

| Industry                      | C&B or RV @ 135°C<br>Spec η <sub>max</sub> = 3Pa.s<br>EN13702 and Anton Paar Method | ] |
|-------------------------------|-------------------------------------------------------------------------------------|---|
| Research – Currently underway | Calibration RV vs C&B (JvH)                                                         | • |

Photo: K Louw

# **Binder Recovery**



| Industry            | Rotary Evaporator (agreed in<br>Franschoek)                                                   |
|---------------------|-----------------------------------------------------------------------------------------------|
| Activity - Priority | Research complete at CSIR. GM has drawn<br>up protocol for Rotor-Vapour based on<br>research. |
|                     | Bit Mat Committee- distributed draft protocol for comment. Solvent type is important          |

# **Benefits of PG Spec for SA?**

- Binder selection based on traffic, climate
- Product innovation reliably assessed
- Permanent deformation reliably evaluated
- Long Term Ageing finally assessed, for thin layers in SA context!!
- Durability stress relaxation holistically assessed (not fatigue versus LT fracture)
- Resource economy in test apparatus & methods (but bitumen sample size IT and LT!)
- No binder grade proliferation

## **Implementation Plan**

- SANRAL to implement PG specs for roads projects in parallel to existing spec for 2 years
- Data from DSR to be processed for G-R, R etc by CSIR and SUN. Can feed into SARDS d-base
- SANRAL to support high impact rheological research to fill gaps
- Launch to be coordinated by SANRAL/Sabita
- PG binder lab certification course to be organised

### **Implementation Plan**





# Thank you!

# Joining the curve at an elevated level!



# PG BINDER SPECIFICATIONS RESEARCH

#### Steph Bredenhann 30<sup>th</sup> Road Pavements Forum 11 November 2015



# **Proposed specification**

|                                                                                     | Proposed Classification                |         |          |     |     |     |     |     |
|-------------------------------------------------------------------------------------|----------------------------------------|---------|----------|-----|-----|-----|-----|-----|
| Property                                                                            | 585                                    | 64S     | 58H      | 64H | 58V | 64V | 58E | 64E |
|                                                                                     | -22                                    | -16     | -22      | -16 | -22 | -16 | -22 | -16 |
| Maximum pavement design temperature (°C)                                            | 58                                     | 64      | 58       | 64  | 58  | 64  | 58  | 64  |
|                                                                                     |                                        | Origina | l binder |     |     |     |     | =   |
| G*/sinδ, 10rads/sec at T <sub>high</sub> , minimum                                  | 1.0                                    | 1.0     |          |     | N,  | /A  |     |     |
| G*, δ,0.05 to 20 rads/sec, at ([(T <sub>max</sub> -<br>T <sub>min</sub> )/2]+4)°C   | G*, δ,0.05 to 20 rads/sec, at          |         |          |     |     |     |     |     |
| Viscosity Pa.s, 135°C, Pa.s, maximum                                                | $([(T_{max}-T_{min})/2]+4)^{\circ}C$   |         |          |     |     |     |     |     |
| Flash Point (° C), minimum                                                          |                                        |         |          |     |     |     |     |     |
| Storage stability, Max % difference, G* <sub>T</sub> and G* <sub>B</sub>            |                                        |         |          |     |     |     |     |     |
|                                                                                     |                                        | RTFC    | Jinder   |     |     |     |     |     |
| Maximum Mass Change (m/m %)                                                         |                                        |         |          | 1   | .0  |     |     |     |
| J <sub>nr</sub> (ASTM D7405) @ T <sub>high</sub> , maximum                          | 5                                      | 4       | 2.0      | 2.0 | 1.0 | 1.0 | 0.5 | 0.5 |
| G*, δ,0.05 to 20 rads/sec, at ([(T <sub>max</sub> -<br>T <sub>min</sub> )/2]+4)°C   | Report                                 |         |          |     |     |     |     |     |
| Ageing Ratio, G* <sub>RTFOT</sub> /G* <sub>Original</sub> , maximum<br>(10rads/sec) | 3.0                                    |         |          |     |     |     |     |     |
|                                                                                     |                                        | PAV b   | oinder   |     |     |     |     |     |
| S(60s) at T <sub>min</sub> + 10°C , MPa, maximum                                    | 300                                    |         |          |     |     |     |     |     |
| m(60s) at T <sub>min</sub> + 10°C, minimum                                          | T <sub>min</sub> + 10°C, minimum 0.300 |         |          |     |     |     |     |     |
| •T(c), ASTM D????, minimum                                                          | -5                                     |         |          |     |     |     |     |     |
| G*, δ,0.05 to 20 rads/sec, at ([(T <sub>max</sub> -<br>T <sub>min</sub> )/2]+4)°C   | Report                                 |         |          |     |     |     |     |     |
| Ageing Ratio, G* <sub>PAV</sub> /G* <sub>Original</sub> , maximum<br>(10rads/sec)   |                                        |         |          | 6   | .0  |     |     |     |



# DSR REPORT – what next?

- Complex modulus, G\* [Pa]
- Phase angle, δ [°]
- Frequency, f [Hz] or [rad/sec]
  - Min f = 62.83 Hz (0.05 rad/sec)
  - Max f = 0.314 Hz (20 rad/sec)
- Temperature,T [°C]  $\{T_{max}-T_{min}\}/2\}+4$ 
  - PG58–22 22 °C
  - PG64–16 28 °C

Calculate parameters and determine what to do with them



# SARDS and PG SPECS

- Some research work already done under SAPDM (SARDS) project
- Future building of data base

Link between SARDS and PG Specs essential



# **Research requirements**

- Collate info from SARDS and other research
- Finalise specification limits
- MSCR Stress, time (cycles), protocols
- Alternative protocols for durability (fatigue)
- Finalise binder recovery method
- Ageing, especially PAV
- Binder selection, especially for seals
- Develop/define QC and QA on site
- Relate bitumen performance with PG spec
- Where does non-homogeneous binders fit in?
- Binder and asphalt modelling



#### Public/private partnership

- SANRAL already sponsored SAPDM
- SABITA sponsored initial research
- Private sector participation
- SANRAL to sponsor research now
  - Direct contribution for project work R2.5m
  - Bursaries for M-students
- SABITA will contribute through its members
  - Tosas already busy with project (bit rubber)
  - Much in planning stage
- Provinces and Metros?



# THANK YOU

