

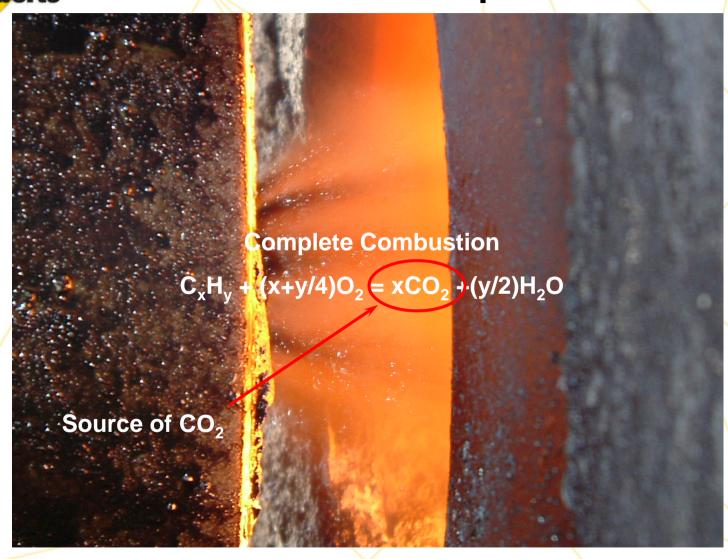
Road Pavement Forum November 2009

Brian Neville

Carbon Footprint

- What is it?
 - > Total amount of GHG emitted in activities
 - Includes both direct and indirect emissions
 - >Unit: CO₂ e

The demand on the bio-capacity required to sequester the CO₂ emissions from fossil fuel combustion. (Photosynthesis)


Carbon Footprint

- Not limited to CO₂ emissions
- Global Warming Potential
 - Absorption of infra-red and near infra-red
- Other GHG's
 - ➤ Methane (CH₄) GWP ≈ 25₁₀₀
 - Nitrous Oxide (N₂O) GWP ≈ 298₁₀₀
 - ➤ HFC & Sulphur Hexaflouride

Carbon Footprint

Asphalt Plant Footprint

Murray Asphalt Plant Footprint

- Measurable energy use
 - Aggregate heating fuel
 - ➤ Purchased Energy consumption
 - ➤ Electricity & Steam
 - ➤ Paraffin, Diesel & LPG consumptions
 - ➤ Loader
 - ➤ Bitumen Heating

Murray Asphalt Plant Footprint

- Some Interesting Facts
 - ➤ Asphalt footprint globally small
 - ➤ Biggest culprits
 - ➤ Coal Power Stations
 - ➤ Motor Vehicles
 - ➤ Deforestation (slash & burn)

GHG Calculators

- Many available
 - ➤ European Commission LCA

http://lca.jrc.ec.europa.eu/lcainfohub/introduction.vm

➤ Greenhouse Gas Protocol Initiative

http://www.ghgprotocol.org/calculation-tools/all-tools

➤In RSA: SABITA – Energy/Carbon Footprint Calculator

GHG Calculators

SABITA – Energy/Carbon Footprint Calculator

Microsoft Office Excel Worksheet

	PROD	CO ₂ -e (tonnes)						kg CO ₂ .e
	TONNES	AGG HEAT	HEAT	ELEC	SCOPE 1	SCOPE 2	TOTAL	per Tonne
					TOTAL	TOTAL		prod
CK	120,541.06	2246.955	38.86775	1,556.40	2,285.82	1,556.40	3,842.22	31.875
RPT	135,147.80	3197.76	5.559754	991.09	3,203.32	991.09	4,194.41	31.036
PMB	88,493.22	1644.616	3.941655	909.18	1,648.56	909.18	2,557.74	28.903

Location: Contermanskloof

Plant Type: Batch

Figures year to date:

Fuel consumption 30,946 GJ

Electricity 1,297,000 kWh

Carbon footprint 3,825 ton CO₂

Production 120,541 ton

Key figure 296 MJ/ton

Key figure corr. for Moisture 260 MJ/top/

Carbon footprint per ton 32 kg CO /ton

	PROD	CO ₂ -e (tonnes)						kg CO ₂ .e
	TONNES	AGG HEAT	HEAT	ELEC	SCOPE 1	SCOPE 2	TOTAL	per Tonne
					TOTAL	TOTAL		prod
CK	120,541.06	2246.955	38.86775	1,556.40	2,285.82	1,556.40	3,842.22	31.875
RPT	135,147.80	3197.76	5.559754	991.09	3,203.32	991.09	4,194.41	31.036
PMB	88,493.22	1644.616	3.941655	909.18	1,648.56	909.18	2,557.74	28.903

Location: Pietermaritzburg

Plant Type: Drum

Figures year to date:

Fuel consumption 22,030 GJ

Electricity 700,433 kWh

Carbon footprint 2,455 ton CO₂

Production 88,493 ton

Key figure 285 MJ/ton

Key figure corr. for Moisture 266 MJ/ton

Carbon footprint per ton 29 kg CO₂/ton

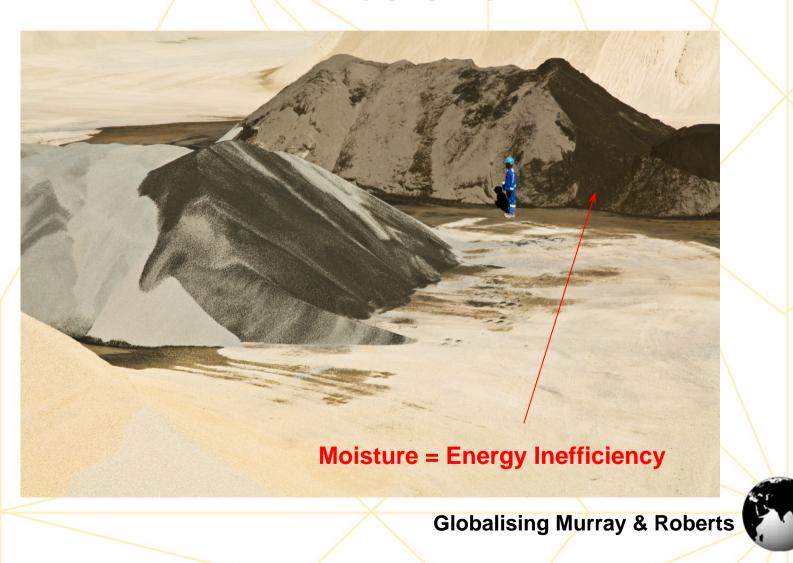
Benchmarks

- > 1st World: 25 kg CO₂-e/tonne (production only)
- ➤ Generally acceptable figures of 26 35 kg CO₂ -e/tonne
- ➤ Equates to 2,500 tonnes CO₂ for 100,000 tonnes production (car ≈ 6 tonnes p.a.)

SABITA Calculator

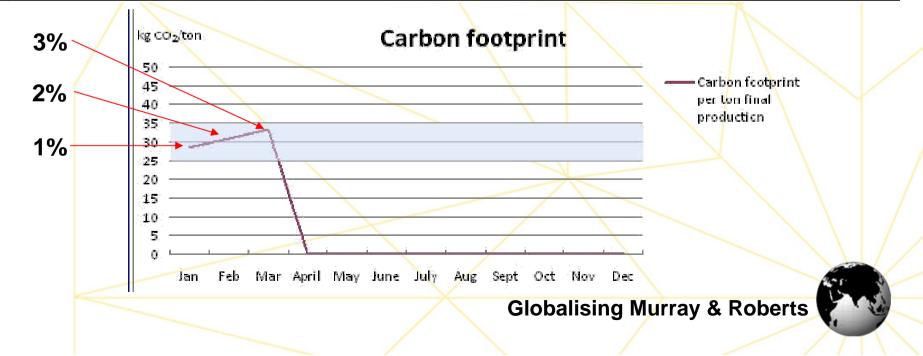
- Only for primary asphalt production
 - Vehicles traveling from plant to site not covered

- Some Observations on SABITA Calculator
 - Need to distinguish between different diesel usages
 - Efficiency improvement can be small and will possibly not show up as an improved footprint
 - Electricity emission factors unconfirmed



- Reduce energy consumption
 - ➤ Use efficient motors and gearboxes
 - >VSD's
 - ➤ Plant & burner setup (look for inefficiencies)
 - >WMA
 - Operating at plant capacity
 - Dry stockpiles moisture reduction !!
- Evaluate different fuel types

- The effect of moisture
 - > 1% H₂O ≈ 13% fuel usage increase
 - > 1% H₂O ≈ 2kg CO₂/tonne increase
 - Knock on effect on production capacity


To put this in perspective:

The vaporization of 10kg of water requires 22.5MJ, as much energy as required to heat 154 kg of coarse aggregate from 20°C to 195°C!

Key Figures	Key figures per ton final production MJ/ton	Key figures corrected for Moisture MJ/ton	Carbon footprint per ton final production ton CO ₂ /ton prod
Jan	288	283	29
Feb	321	310	31
Mar	352	335	33

- Moisture Reduction
 - ➤ Cover stockpiles
 - ➤ Surface stockpile area
 - ➤ Build stockpiles on sloped area
 - ➤ Introduce drainage system
- Plant Efficiency
 - Check CO levels incomplete combustion
 - Compressed air wastage

- WMA
 - ➤ Additives
 - ➤ Carbon emissions not quantified
 - ➤ Definite fuel saving 1 lit/tonne (in trials)
 - **≻**Foaming
 - ➤ Capital outlay
 - >Expected fuel saving

Offsetting Carbon Emissions

Offsetting Carbon Emissions

- Use of RA
 - >20% 25% RA in asphalt mixes
 - ➤ Equates to 2,500 tonnes of CO₂ offset in 100,000 tonnes production
 - Production of aggregate ≈ 8 kg CO₂/tonne @ 95% of asphalt mix = 7.6 kg CO₂/tonn
 - Production of bitumen ≈ 285 CO₂/tonne @ 5% of asphalt mix = 14.25 kg CO₂/tonne

Conclusion

- GHG are part of our lives & activities
- CO₂-e emissions can be calculated
- We have a tool to benchmark ourselves against
- There are ways to reduce and/or offset carbon emissions
- We can make a difference albeit small

Murray &Roberts

Fin

