ROAD PAVEMENT FORUM MAY 2011

Testing the effect of cement types on slurry

ta

Need for testing

- Manual 28 (SAT Seminars)
- The effectiveness of CEM V cement questioned

Background

Surfactants (soaps) form part of every day life !!!

Three main types of emulsion

The breaking of reactive cationic emulsions

By one or more of the following mechanisms:

- * Adsorption of free emulsifier on aggregate
- * Adsorption of bitumen particles on aggregate
- * Rise in pH caused by aggregate or cement
- * Loss of water

Classification of aggregates

Alkaline content, % 100 9 marble limestone basalt diorite sandstone granite quartzite

Silica content, %

Reaction of anionic emulsion with basic aggregate

Reaction of anionic emulsion with acidic aggregate

Reaction of cationic emulsion with basic aggregate

Reaction of cationic emulsion with acidic aggregate

Use of emulsions for slurry

- 90% Anionic emulsion
- Limited use of Cationic emulsions
 Eastern Cape practitioners preference

Hydration of cement

Cement reaction with water
 □Ca(OH)₂ ↔ Ca⁺⁺ + 2(OH)⁻

These ions react with emulsion

 CaO higher for CEM1 and Lowest for CEM V 65% 43%

Cationic Stable Grade

No cement

The effect of cement on stable mix emulsion

With cement

Slurry mixes without cement

- Both Cationic and Anionic emulsions
- Slurry segregates

Slurry mixes with Cement

- Causes emulsion to thicken
- Resulting in homogeneous creamy mix

Reaction of cement (Anionic Emulsions)

• No PH change (both alkaline)

Under microscope

- □ Ionic character destroyed
- No further electrostatic attraction of emulsion to aggregate
- Bond now due to interaction of the cement and emulsifier molecules adsorbed on the bitumen droplets

Reaction of cement (Cationic Emulsions)

PH changes as a result of (hydroxide ions)
 < 4 to >10

• Under microscope

- Ionic character of emulsion destroyed with addition of cement
- As with Anionic emulsions the bond now due to interaction of the cement and emulsifier molecules adsorbed on the bitumen droplets

Reaction of cement or lime with anionic slow set emulsion

CONCLUSION

• Conventional slurry cures mainly as a result of water evaporation

Study

- 4 Cement manufacturers
- 11 different factories
- 22 cements obtained

Cement Types

- CEM 1 Portland cement (comprising Portland cement and up to 5% of minor additional components)
- CEM II Portland–composite cement (Portland cement and up to 35% of other single components)
- CEM III Blastfurnace cement (Portland cement and higher percentages of blastfurnace slag)
- CEM IV Pozzolanic cement (Portland cement and up to 55% of pozzolanic constituents) (volcanic ashes)
- CEM V Composite cement (Portland cement, blastfurnace slag or fly ash and pozzolana)

The mixing/coating test

- Done with all cements
- Cationic and anionic

Slurry > 5 minutes

• All cements effective CEM I – CEM V

Testing effect of Calcium Oxide Content

- Medium grade crusher dust (Quartzitic)
- 1% Cement by mass
- 15% emulsion (Cationic and Anionic)
- 11% water
- Viscosity test (Stormer viscometer ASTMD562)
- Consistency Test ASTM 3910

Consistency test

Application	Target Flow
Slurry bound macadam	60 mm
Texture treatment or Cape Seals	30 - 40 mm
Slurry overlay	20 - 30 mm
Micro surfacing	10 - 20 mm

Study Results

CONCLUSIONS

- Good correlation between viscosity test and consistency (slump) test
- Consistency of cationic slurry much higher than anionic slurry
- Therefore, cationic slurry has higher water demand to obtain target flow
- Different CEMI cements react differently, specifically with anionic emulsions
- Therefore, re-evaluation of water demand is necessary when:
 - Changing cement source
 - Age of cement

