ROADS PAVEMENT FORUM

Steph Bredenhann Performance Grade Binder 5 May 2016

Overview

- Specification framework
- Implementation plan
- Supply to neighbouring countries
- Specifications in neighbouring countries
- Will SA Specifications influence neighbours?
- SA binder production
- Research
- Quality of testing
- Quality control and Acceptance

Proposed Specification Framework

		Proposed Classification									
	Property	58S	64S	58H	64H	58V	64V	58E	64E		
		-22	-16	-22	-16	-22	-16	-22	-16		
	Maximum pavement design temperature (° C)	58	64	58	64	58	64	58	64		
	Original binder										
	G*/sinδ, 10rads/sec at T _{high} , minimum	1.0	1.0		N/A						
	G*, δ,0.05 to 20 rads/sec, at ([(T _{max} - T _{min})/2]+4)℃	Report									
	Viscosity Pa.s, 135°C, Pa.s, maximum	3.0									
	Flash Point (° C), minimum	230									
	Storage stability, Max % difference, $G^{\star}{}_{T}$ and $G^{\star}{}_{B}$	10									
	RTFO binder										
	Maximum Mass Change (m/m %)	1.0									
	J _{nr} (ASTM D7405)@T _{high} , maximum	4.5	4.5	2.0	2.0	1.0	1.0	0.5	0.5		
	G*, δ,0.05 to 20 rads/sec, at ([(T _{max} - T _{min})/2]+4)℃	Report									
	Ageing Ratio, G* _{RTFOT} /G* _{Original} , maximum	3.0									
	PAV binder										
	S(60s) at T _{min} + 10°C , MPa, maximum	300									
	m(60s) at T _{min} + 10°C, minimum	0.300									
	• T(c), ASTM D????, minimum					.5					
	G*, δ,0.05 to 20 rads/sec, at ([(T _{max} – T _{min})/2]+4)℃				Re	port					
	Ageing Ratio, G* _{PAV} /G* _{Original} , maximum (10rads/sec)				6	.0					
		ર			*	BBR			THE SOUTH AFRIC		

DSR REPORT - what next?

- Complex modulus, G* [Pa]
- Phase angle, δ [°]
- Frequency, f [Hz] or [rad/sec]
 - Min f = 62.83 Hz (0.05 rad/sec)
 - Max f = 0.314 Hz (20 rad/sec)
- Temperature,T [°C] {T_{max}-T_{min})/2}+4)
 - PG58–22 22 °C
 - PG64–16 28 °C

Calculate parameters and determine what to do with them

Clean sheet

- SA small market do what is necessary
- SA proposed specification relied heavily on USA experience with Europe influence
- New knowledge, e.g. G-R and $\Delta(Tc)$
 - difficult to implement in USA resistance to change
- SA starts from clean sheet
 - Approach with open mind
 - But SA limits on values required
- Great future

Benefits of PG Spec for SA?

- Binder selection based on traffic, climate
- Product innovation reliably assessed eg PMBs
- Permanent deformation reliably evaluated
- Long Term Ageing finally assessed, for thin layers in SA context!!
- Durability stress relaxation holistically assessed (not fatigue versus LT fracture)
- Resource economy in test apparatus & methods (but bitumen sample size IT and LT!)
- No binder grade proliferation

SARDS and PG SPECS

- Some research work already done under SAPDM (SARDS) project
- Future building of data base

Link between SARDS and PG Specs essential

Implementation plan

- Introduction to industry on 25th January 2016
- Workshops to inform industry March 2016
 - 15th in Johannesburg
 - 16th in Cape Town
 - 17th in Durban
 - 18th in Port Elizabeth

Bitumen Rheology Masterclass June 2016

- 21-23 June 2016 in Johannesburg
- International experts
- Workshop with DSR UG

Two-year parallel implementation

• Include data analyses and research

Final implementation

• SANS

Supply to neighbouring countries

Africa

- Kenya drums and bitutainers
- Djibouti drums
- Zambia bulk (road), drums and bitutainers
- Namibia bitutainers by ship to Walvis Bay
- Point Noire drums
- Mozambique bitutainers
- Zimbabwe drums and bitutainers
- other

Indian Ocean Islands

- Mayotte bitutainers
- Reunion bulk (sea) and bitutainers
- Madagascar bitutainers

Specifications neighbouring countries

- Namibia SANS
- ZAMBIA SANS
- Mozambique SANS
- Indian Ocean Islands CEN
- Kenya BS

Plus specifications from Donor Countries

Binder Test Matrix from Refineries

2006 data

Snapshot SA Binder Classification

40/50	60/70	80/100	150/200
X	PG64-16	PG58-22	X
PG64-16	PG58-22	PG58-22	X
PG64-16	PG64-22	PG58-16	PG52-22
PG70-22	PG64-16	PG58-22	PG52-22

Base bitumens remain the same – should not affect export of bitumen

Public/private partnership

- SANRAL already sponsored SAPDM
- SABITA sponsored initial research
- Private sector participation
- SANRAL to sponsor research now
 - Direct contribution for project work R2.5m
 - Bursaries for M-students
- SABITA will contribute through its members
 Provinces and Metros indicated buy-in

Quality of Testing

Master curves

- Two decades max
- Inter–laboratory testing
- Standards refined
- Stay within limits of equipment
 - Compliance, compliance, compliance
 - Therefore, know your equipment
- Do not mix research and routine testing
- Qualified (certified) operators for routine tests
- etc

Site Quality Control and Acceptance

- DSR equipment too expensive for site
 - BUT, newer models are affordable
 - AND, new viscometers based on DSR
- Still use "conventional" tests
 - Ring & Ball
 - Viscosity
- Research effort during two years of parallel testing to establish norms
- Final decision to be made after two years

Binder/Mix Relationship

- Binder specification is a shopping tool
- Real test is mix performance
- Binder/mix performance relationship not well defined
- Influence of active filler
- Recycling bituminous materials (Shingles)
- Research to focus on Binder to Mix

Conclusion

- Implementation will be done over two years
- PG specifications introduced in workshops
- Advanced course to explain principals
- Quality of testing will be addressed
- Quality control and acceptance addressed
- Export should not be affected

THANK YOU

