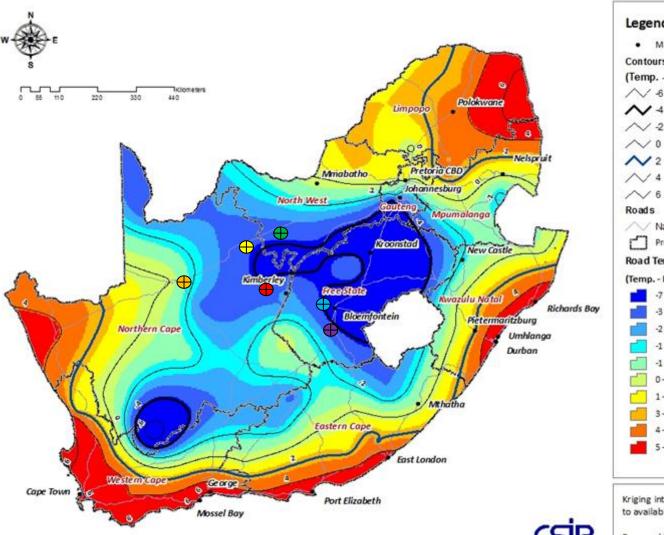
MAXIMISE SEALWORK THROUGHOUT THE YEAR

FEEDBACK: RPF - MAY 2014

Steph Bredenhann Gerrie van Zyl



Introduction

- Literature survey
- □ Trial Sections
- Workshops (Internal)
- □ SAT Seminars
- Project finalisation

Legend: Main Towns/Cities Contours (Cold) (Temp. - Degrees Celsius) 1/6 14 1/2 / National Provinces Road Temperature surface (Cold) (Temp. - Degrees Celsius) -7 - -4 -3 -- 3 -2 -- 2 -1 -- 2 -1--1 0-0 1-2

Kriging interpolation method applied to available temperature data points.

Prepared by J. Maritz CSIR BE

Summary of key asp

- □ Any seal, any time, almost any
- Attention to detail during all stages
 - Planning
 - Design
 - □ Contract documentation
 - □ Construction & trial sections
- Strategy
 - ☐ Schedule high risk projects for summer period
 - ☐ Provide alternative seal/binder if extended into winter
 - Evaluate risks and costs de- and re-establishment

Strategy

- Minimise risks
 - Schedule high risk projects for summer period
 - ☐ High traffic
 - ☐ High road importance
 - Sub-zero temperatures
 - □ Only low risk projects for winter
 - ☐ Provide alternative seal/binder if extended into winter
 - ☐ Low risk seals for winter
 - □ Evaluate risks and costs de- and re-establishment

New directions

- Introduce high viscosity emulsions
- Introduce mobile precoating plants
- Compulsory mobile weather stations
- Use of anionic emulsion for precoating
- MC 30 Cut- back

Winter sealing guidelines

- Update current document incorporating feedback (summarise)
- Incorporate into new COTO Specifications
- Update TRH3
- Summary of lessons learnt on Blog

Winter sealing guidelines

- Corrections to current document e.g.
 - □ Temporary 9.5 Cape seal only for bypasses and shoulder widening
 - □ 19 Cape seals can be directly applied during winter as long as curing can take place before sub-zero temperatures
 - ☐ Aggregate selection to optimise local sources/ on-site crushers
 - ☐ Standardise traffic parameter in document i.e. ELV not ADT

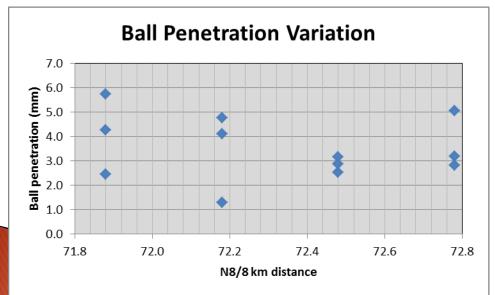
New/ improved test methods and specifications

- Binder/stone adhesion
 - ☐ Preferred binder and stone
 - □ Sweep test ?
- Aggregate
 - Durability/ Soundness (balance to match lower traffic/ rolling)
 - □ Elongation specification
- Macro texture guideline ranges for different seal types
- Method specifications
 - ☐ Roller type/ mass, passes and sequence
 - □ Spray bar height
 - Drag broom specifications

New/ improved test methods and specifications ...

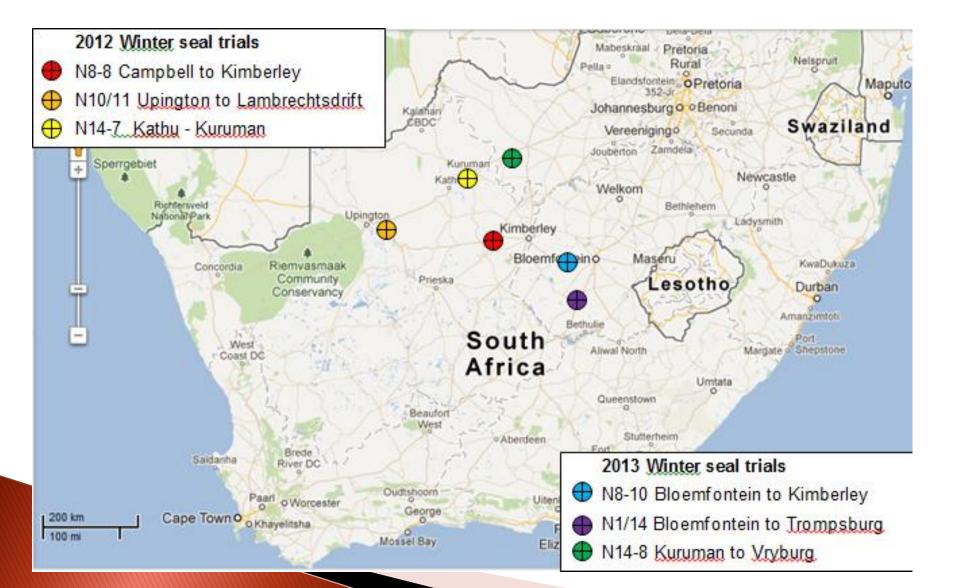
- Minimum equipment related to seal type and production rates
- New/ adjusted temperature/ climate specifications
 - □ Ambient, road surface/ aggregate temperature
 - ☐ Humidity and wind speed
 - Temperature measurement for uniform sections
 - □ Temperature reduction records Spray length determination
- Opening to traffic
 - ☐ Pull-out test specs for aggregate sizes and binder type
 - Controlled opening and surface temperature specs
 - Climate monitoring

Strategy ...

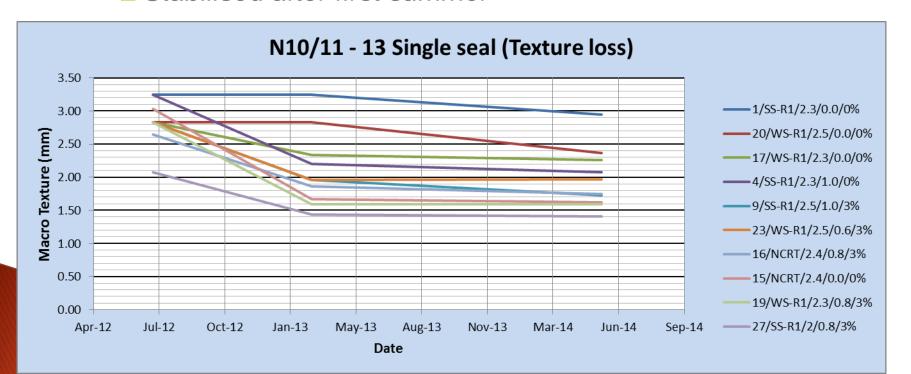

- New/ improved test methods and specifications ...
 - Moisture in base/existing surfacing
 - ☐ Glass plate test (Specs and interpretation required)
 - ☐ Granular bases (monitor moisture before and after prime)
 - □ Aggregate spread
 - □ Control of aggregate spread rates and accuracy specs
 - Distributors
 - ☐ In-line flow meters to be installed
 - Binder properties
 - ☐ Additional information be provided by suppliers e.g.
 - □ Viscosity/ temperature for different cut-back percentages
 - □ SANS specification adherence for base binders

New/ improved test methods and specifications ...

- Testing, storing and handling of bituminous products
 - New PG specifications awaited
 - ☐ Testing and reporting of cut-back binders (how and what)
 - Safe handling SABITA report to be published (cutting back on site)
 - ☐ Emulsion (time frame for testing)
- Site management and QA
 - ☐ Formalisation of quality plans and execution

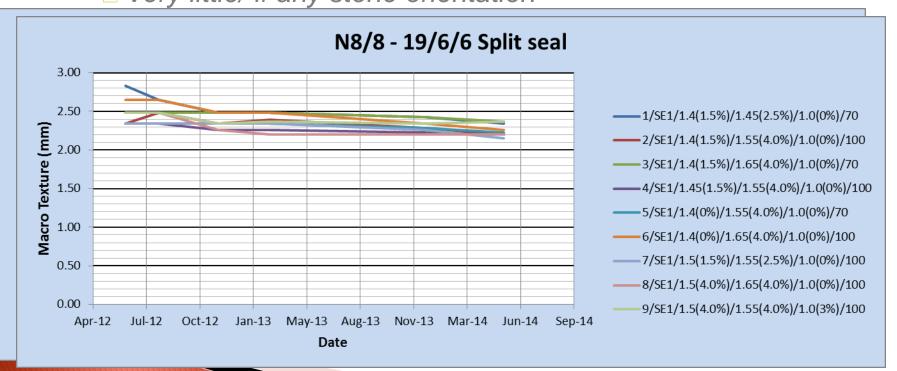

Improvement of design guidelines

- Seal type selection
- Position and ranges of application rates
- Ball penetration interpretation for
 - □ Cape seals 20th percentile (min binder)
 - ☐ Stone seals 80th percentile (rather fatty than stripping)



Continue trial monitoring

Recent survey


- Observations (Single seal)
 - □ texture loss mainly due to
 - Initial embedment softening of pretreatment
 - stone orientation
 - ☐ Stabilised after first summer

Recent survey

Observations (Double seals)

- □ texture loss mainly due to initial embedment (softening)
- ☐ Stabilised after first summer
- □ Very little/ if any stone orientation

End