#### Development of a New Asphalt Mix Design Manual for South Africa

30<sup>th</sup> RPF 11 November 2015

Joseph Anochie-Boateng CSIR Presented by Herman Marais Much asphalt





#### SOCIETY FOR ASPHALT TECHNOLOGY

CENTRAL REGION PRESENTS

> Isabel Smit TEL: 012-481 3880 FAX: 012-803 7943 Email: isabel.smit@smec.com

#### Workshop: "First CAPSA'15 Feedback Session – Asphalt Papers and Workshops"

The 11<sup>th</sup> Conference on Asphalt Pavements of Southern Africa which was held from 16 to 19 August 2015 was a huge success and was the biggest conference with more than 600 attendees. There were however young professionals that were not fortunate enough to attend the conference and this first CAPSA/15 Feedback Session is aimed at giving a condensed feedback of the highlights of the conference. This workshop would also benefit attendees that were not able to attend all the parallel workshops and presentations that were run concurrently. The first feedback session will cover asphalt related papers and workshops and the second feedback session will cover Bitumen and Sealwork.

| DATE  | 11 November 2015                                          |
|-------|-----------------------------------------------------------|
| TIME  | 13h00 for 13h30                                           |
| PLACE | C SIR International Convention Centre – Same venue as RPF |

#### PROGRAMME

- 13h30-14h00 Welcome and Summary of Asphalt Papers (Herman Marais)
- 14h00-14h40 Airport pavements Workshops feedback and Asphalt Failure Investigation Paper by (Emile Horak)
- 14h40-15h10 EME implementation and RA research papers by (Sasheen Rajkumar)
- 15h10-15h30 Comfort Break
- 15h30-16h00 Comparing current HMA Design Guideline with new Asphalt Design Manual (Elsabe van Aswegen)
- 16h00-16h30 Use of WMA technologies in Long Haul Applications (Joanne Muller)
- 16h30 Closure and Cocktails sponsored by Aveng

Please pass this invitation on to any other interested colleagues, particularly Local Authorities, Metros, Developers and contractors who will undoubtedly gain knowledge from this valuable workshop.

#### **Acknowledgements**

- Project commissioned and funded by Sabita
- Project carried out by the CSIR
- 2 major asphalt manufactures in SA
- The industry experts
- Co-authors of paper
  - Johan O'Connell
  - Benôit Verhaeghe
  - Piet Myburgh



#### Initiation

- Need existed to update the South African mix design methods
  - SAPDM / SARDS
  - Transition to PG binder specification
  - Increasing use of unconventional mixes that require alternative design methods (WMA, EME, mixes w/ RA, industrial byproducts, etc.)
  - Increased in volumes of heavy vehicles on SA roads
  - Demand for higher performance asphalt mixes
  - Review the current national compliance criteria for asphalt in contract specifications
  - International advances in asphalt mix design



#### **Project framework**

- Phase I: Establishing project management structure
- Phase II: State-of-the-art study

Evaluation of current mix design methods

Literature study to assess gaps

Consultation with industry experts

• Phase III: Experimental work and manual development



#### **Objectives**

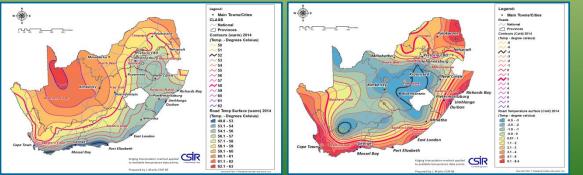
- Manual will replace existing guidelines for the design of asphalt mixes in South Africa (Interim parallel testing on major projects)
- Move from *empirical*-based design towards *performancerelated* design of asphalt
- Methods in line with international best practice
- Enable the formulation of national specifications Increase reliability of asphalt mix design... simplify the design process ...reduce the number of test methods involved

#### **Scope / Features of the method**

- Mix type selection
- Binder selection
- Aggregate section
- Mix design approach
- "Link" with pavement design
- Quality assurance

What is not covered "special mixes," i.e. cold mixes, porous mixes, EMEs, ...

#### **Mix type selection**


- Determining the aggregate packing characteristics of the mix is critical to mix type selection
- Mix types based on skeleton structure
  - Sand skeleton mixes
  - Stone skeleton mixes

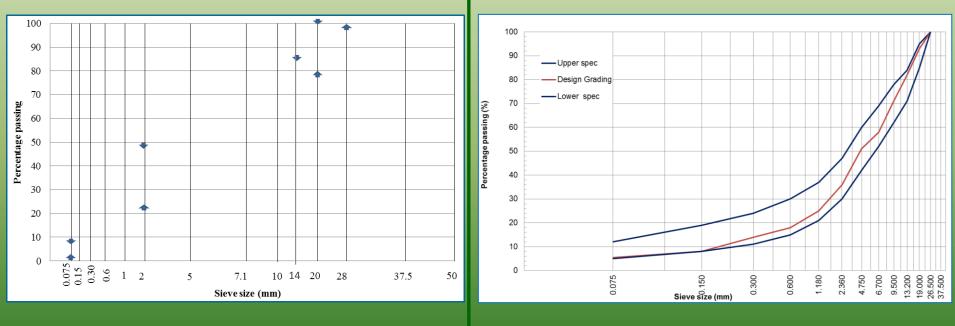


#### **Binder selection**

- Performance grade (PG) binder selection methodology
  - Binder selection based on environmental & traffic conditions
    - Two high temperature zones
    - A single low temperature
    - Traffic volume and speed

PG 58 - 22 ; PG 64 -16




| 33             |                      |         |      |  |
|----------------|----------------------|---------|------|--|
| Traffic Volume | Traffic Speed (Km/h) |         |      |  |
| (million ESAL) | < 20                 | 20 - 70 | > 70 |  |
| < 10           | Н                    | S       | S    |  |
| 10 – 30        | V                    | н       | н    |  |
| > 30           | Е                    | v       | v    |  |
|                |                      |         |      |  |

#### **Aggregate selection**

- General requirements and specifications for aggregates
- Grading of an aggregate blend should lie within certain key <u>control points</u>
- Existing grading bands are not a requirement
- Grading suited for quality control



#### **Control points for grading selection**



Grading control points for NMPS = 20 mm

Existing grading bands / limits

#### Mix design approach

- Three levels of designs are used in relation to traffic volume and risk profile
- Volumetric design approach is used to select optimum binder content for Level I
- Level I binder content serves as the starting point to select the optimum mix for design situations of Level II and Level III
  - Optimum binder content for Level II and Level III is selected based on performance tests

#### **Minimum binder content**

 Based on richness modulus - a measure of the binder film thickness surrounding the aggregate

$$B_{ppc} = K \times \alpha \times \sqrt[5]{SA}$$
$$B_{ppc} = \frac{100 \times P_B}{(100 + P_B)}$$

 $B_{ppc}$  = mass of binder expressed as a percentage of the total dry mass of aggregate, including filler

$$B_{B}^{D}$$
 = the binder content by mass of total mix



### Mix design procedure - Level I

#### Level I : Low to medium volume roads

- Low exposure to risk of structural damage (rutting, cracking)
- Up to 3 million E80s
- Volumetric design with mechanical properties testing

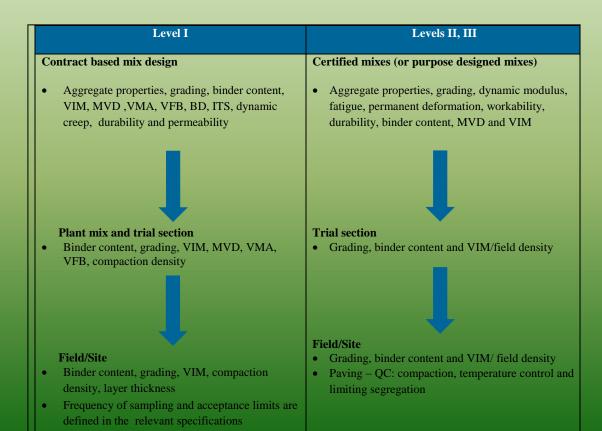
- Preparation Marshall or Gyratory
- Vol. design (4% voids criteria)
- Compliance with
  - Durability (TSR)
  - Stiffness ITS
  - Permanent deformation dynamic creep modulus
  - Fatigue strength SCB
  - Water permeability

## Mix design procedure - Level II

## Level II : Performance-related for medium to high volume roads

- Medium to high exposure to risk of structural damage (moderate to severe rutting and cracking expected)
- 3 to 30 million E80s
- Involves Level I volumetric design
- Performance tests to select optimum mix design

- Preparation Gyratory (increased no. of gyrations)
- Compliance with
  - Durability (TSR) (0.7 Base, 0.8 Surfacing)
  - AMPT dynamic modulus (stiffness) @ 20°C & 10Hz
  - HWTT @ 3 BCs (OBC based on lowest rutting)
  - 4PB Fatigue @ 10°C & 3 strain levels
  - Workability criteria (gyratory compaction)
  - Water permeability


## Mix design procedure - Level III

## Level III : Performance-related for very high volume roads

- High exposure to risk of structural damage (rutting, cracking severe)
- ≥ 30 million E80s
- Involves Level I volumetric design, full scale performance testing
- Performance data for advanced pavement design and analysis

- As for Level II, but full scale Lab tests
  - Increased no of gyrations
  - Dynamic modulus test @ 6 frequencies, 5 temperatures
  - HWTT @ 3 BCs (OBC based on lowest rutting)
  - 4PB test @ 3 strain levels, 3 temperatures

## **Quality processes**





#### Lab testing & devp't of criteria

- 13 SA asphalt mixes
- Extensive laboratory testing programme
  - Specialized testing (dynamic modulus, fatigue, permanent deformation)
- Criteria / interim criteria / typical values

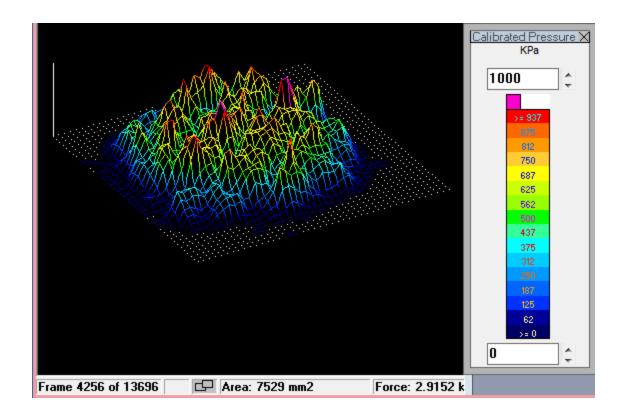


#### **Special mixes**

- Cold mixes Sabita Man's 14, 21 and TG2
- Porous asphalt Sabita Man 17
- Light traffic (residential areas) Sabita Man 27
- WMA Sabita Man 32
- EME Sabita Man 33
- Mixes with RA TRH 21
- SMA Appendix of the design manual



# On the road to implementation (Interactive process)


- Asphalt mix design workshop Midrand Feb 2012 affirmed the proposed project
- Interaction with RPF (May 2013, May 2011)
- Sabita TDFP (industry, consultants, research, clients)
- Review by Sabita TDFP- 13 May 2014
- Industry workshop CSIR ICC18 November 2014
- Final review by Sabita TDFP
- Role out via SAT seminars



#### Conclusion

- We have come a long way with introducing performance related testing
- Urge Client bodies to start with parallel testing on major projects





