ASPHALT DESIGN METHOD FOR SA

RPF 20 – 21 May 2014 Umhlanga KZN

Content

- Initiation
- Project framework
- Scope of the method
- Features
- Process of implementation

Initiation

- Drivers
 - SAPDM
 - Translation to PG binder specification
 - Limited validation of technology proposed in IGDHMA (2001)
 - Innovation in asphalt production (WMA, RA and EME)
 - International and local advances in technology.
 - The increased volumes of heavy vehicles on SA roads

Framework

- Developed in Dec 2009
- Informed by SAPDM
- Inform COTO specification
- Research contract Sabita CSIR 2010
 - Essentially consisting of 3 phases

Project framework

- Phase I: Establishing project management structure
- Phase II: Evaluation of current design methods. Literature study to assess gaps
 Consultation with industry experts
- Phase III: Experimental work and manual development

Objectives

- Manual will replace existing guidelines for the design of asphalt mixes in South Africa
- Move from *empirical*-based design towards performance related design of asphalt
- Methods in line with international best practice
- Enable the formulation of national specifications

Scope of method

- Mix type selection
- Binder selection
- Aggregate section
- Mix design procedure
- Link with pavement design
- Quality assurance/control

Features of the method

- Mix type selection
- Mix design procedure
- Link with pavement design
- Quality assurance

Mix type selection

- Mix types based on skeleton structure
 - Stone skeleton
 - Sand skeleton
- Gradings a secondary property
 - Suited for quality control
 - No more generic types e.g. COLTO fine/coarse etc.
 - Suggested control points for sand skeleton mixes (most common)
 - MPS layer thickness
 - 2mm & 75 µm sieves
- Bailey method recommended optimise mix composition

Grading control points

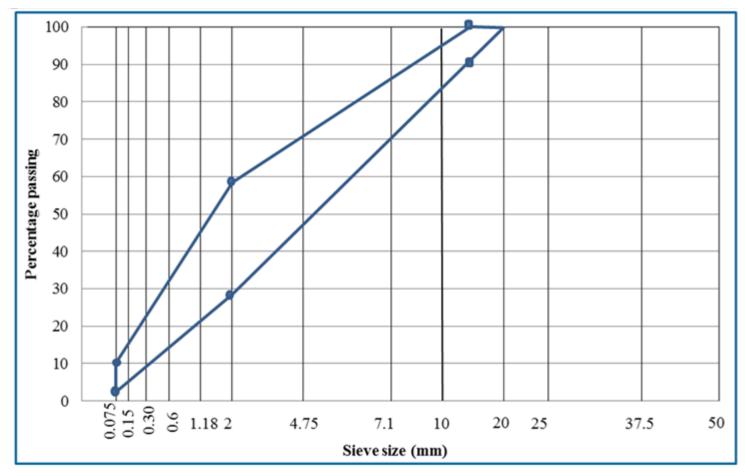
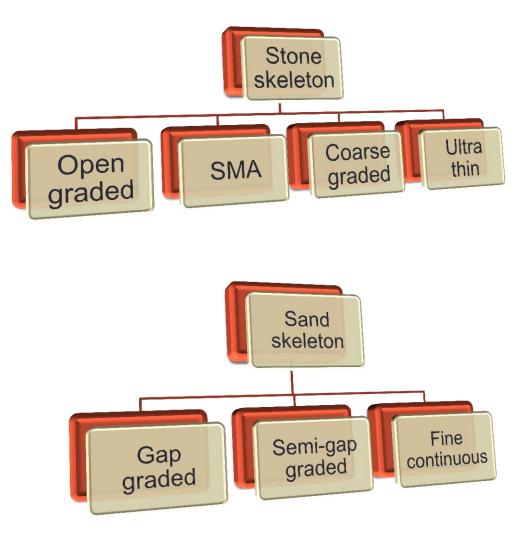



Figure 4.1: Grading control points plotted on 0.45 power chart for MPS = 14 mm

Classification of mix types

Mix design procedure

- Three design levels
 - Level I \leq 3 million ESALs
 - Level II \leq 30 million ESALs
 - Level III > 30 million ESALs

Level I

- Either Marshall or Gyratory specimen preparation
- Mainly volumetric design
- Binder content expressed as a *Richness Modulus*
- Compliance with performance related requirements
 - Durability TSR (modified Lottman test)
 - Stiffness ITS
 - Permanent deformation dynamic creep modulus
 - Fatigue strength SCB test criteria to be developed
 - Permeability

(No Marshall Stability or Flow compliance requirements)

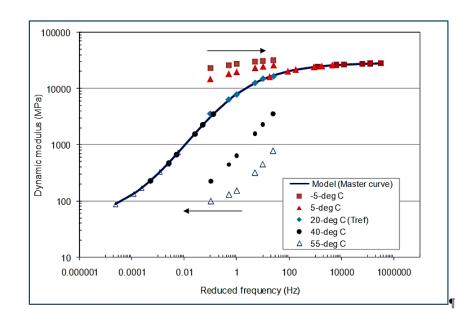
Level II

- Start with volumetrics as per Level I (gyratory)
- Compliance with performance criteria
 - Durability TSR (modified Lottman test)
 - Stiffness (dynamic modulus) AMPT
 - Frequency sweep (0,1, 0,5, 1, 5,10 & 25Hz at 20°C
 - Permanent deformational 3 binder contents
 - Flow number deviator stress 483 kPa; confining 69 kPa
 - Optimum binder content highest flow number
 - Fatigue
 - 4PBT 10Hz at 10 °C & 3 strain levels fatigue curve
 - fatigue life: 50% reduction in flexural stiffness
 - Workability criteria (gyratory compaction)
 - Permeability

Level III

- As for Level II, but full scale permanent deformation and fatigue tests
 - Dynamic modulus
 - 5 frequencies and 5 temps (-5, 5, 10, 20, 40 & 55 °C)
 - Permanent deformation at 3 binder contents
 - 3 Deviator stress levels with confining 69 kPa; 3 test temps
 - Record plastic strain at 20 000 cycles
 - Optimum binder content highest flow number
 - Fatigue life
 - 4PBT 10Hz at 5, 10 & 20 °C & 3 strain levels

Special mixes

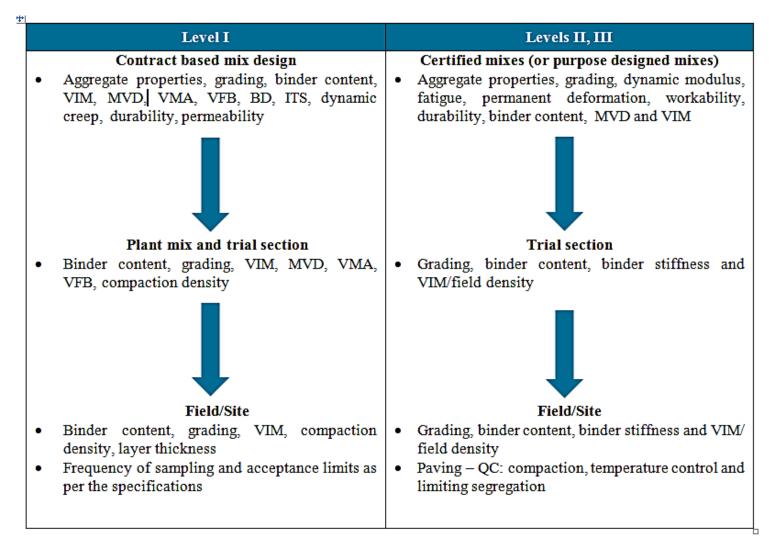

- Cold mixes Sabita Man's 14, 21 and TG2
- Porous asphalt Sabita Man 17
- Light traffic (residential areas) Sabita Man 27
- WMA Sabita Man 32
- EME Sabita Man 33
- Mixes with RA TRH 21
- SMA Appendix of the design manual

Link with pavement design (under construction)

- SAPDM requires response & damage models
 - Dynamic modulus
 - Witczak prediction
 - Hirsch prediction
 - Laboratory tests
 - Asphalt damage models
 - Permanent deformation
 - Fatigue fracture

Dynamic Modulus

- Empirical models (Witczak, Hirsch)
 - Binder properties
 - Mix volumetrics
 - Gradings
 - Packing
- Laboratory method
 - Deriving master curve


Damage modelling

- Permanent deformation
 - Based on repeated load triaxial testing
 - Linkage to AMPT required
- Fatigue cracking
 - Based on 4PBT
- Temperature prediction
 - Max surface temperature
 - Min surface temperature
 - Temperature at depth

Quality assurance

- Principles
 - Level I
 - Mix design tendered for each application
 - Client approval
 - Levels II and III
 - Extensive performance testing
 - Impractical to repeat on contractual basis
 - Suppliers develop certified mixes for a range of applications
 - If not certified, a similar approach would be followed

QA processes

Implementation (Interactive process)

- Asphalt mix design workshop Midrand Feb 2012 affirmed the proposed project
- Interaction with RPF (May 2013, May 2011)
- Sabita TDFP (industry, consultants, research, clients) Review 13 May 2014
- SAT will be requested to workshop the method
- Final review by Sabita TDFP
- Industry workshop

Notes

- Introduction of the PG specifications requires changes
- Terms such as AE-1, AP-1 will ultimately go
- Expertise resides with producers who should produce (and certify) designs for a variety of applications
- COLTO type gradings are not a requirement