Development of a PG Specification for Bituminous Binders

Road Pavements Forum 5 – 6 November 2013

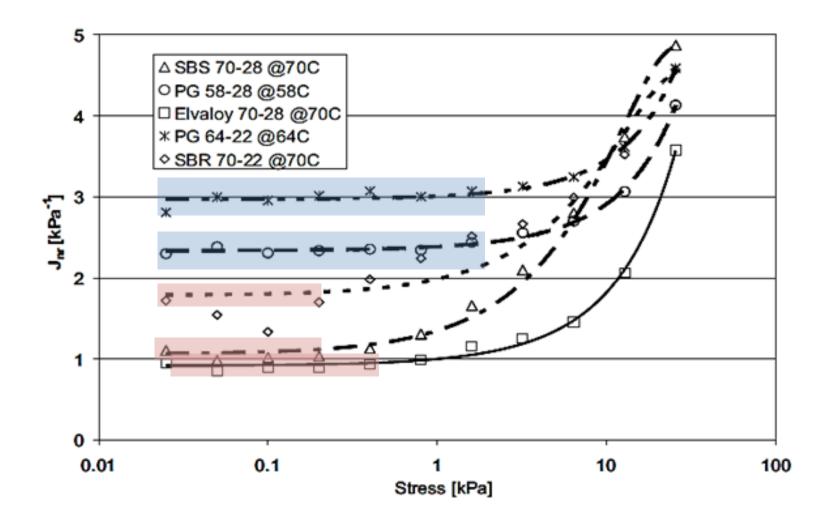
Further research required

Compliance criteria for the following damage resistance characteristics (DRC):

- Viscous deformation (at elevated temp.)
- Resistance to fatigue (intermediate temp.)
- Thermal fracture (at low temp.)

These cover the **binder's contribution** to distress

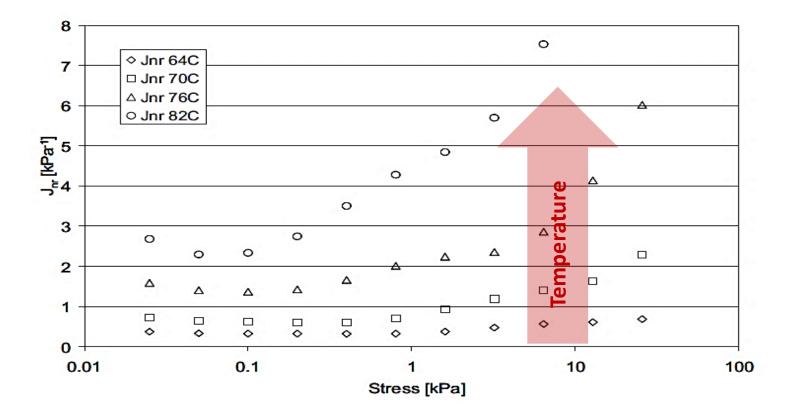
Current research projects


In August this year, Sabita approved 3 projects to be carried out by the CSIR BE:

- Appropriate stress levels for the MSCR test to characterise resistance of the binder to *viscous deformation*
- Examination of the BYET as an monotonic alternative to cyclic tests to measure the binder's resistance to *fatigue*
- A DSR based procedure to determine stiffness and stress relaxation properties of the binder to counter *thermal cracking*.

Stress levels in MSCR test

- In November 2012 Bahia questioned whether 3,2 KPa (adopted in USA) was appropriate for SA pavements
- Stress dependency of PMB more complex than neat binder
- Ranking at an inappropriate stress level poor prediction of performance


Relationship of J_{NR} and Stress

$J_{\mbox{\scriptsize NR}}$ and rutting

- Comprehensive study by Reinke:
 - Stress dependency of 20 binders
 - Hamburg wheel test
 - Suggests 15 KPa rather than 3,2 KPa
 - Revision of compliance limits
- Question: how well does high full-layer temperature in the HWT represent field conditions
- More work required

Stress dependency and temperature

Stress dependency of SA binders at both 58°C & 64°C needs to be considered

Fatigue

- Mixes with similar grading and film thickness
 - 6 different binders neat and modified
 - four point beam fatigue tests
- The 6 binders will then be subjected to the following tests & correlated to FPBT.
 - Monotonic: Binder Yield Energy Test (BYET);
 - Cyclic: Linear Amplitude Sweep (LAS); and
 - Number of cycles to a 20% reduction in dissipated energy $\mathrm{NP}_{\mathrm{20}}$.

RILEM binder fatigue test

- Developed for a specific DSR model
- Measures the number of cycles to a retained
 G* 20% of the initial value
- Concerns:
 - the low strain levels (0,004 0,025)
 - duration of the test, being 1,5 days per test at one of three recommended strain levels

Low temperature fracture

- September Sabita project Georges Mturi visited UW-M
- DSR based procedure was investigated
- DSR equipment can cope with binder temps > 5°C
- Estimate S and m from DSR testing without resorting to BBR (standard rheological methods)
- Alternatively HB proposed a creep test to determine
 S and m direct
- Project will study 20 binders (12 modified)
 - BBR
 - DSR testing at 5 or 10 $^{\rm 0}{\rm C}$

Work in progress

- Lab work for appropriate stress level
- BYE correlations
- Examinations of procedures for low temperature fracture
- Completion early 2014