
New Engineering Qualifications Johnson Carroll and Johan de Koker 10 November, 2015

The HEQSF menu (courtesy of ECSA, 2013)

Qualification Type	Credits at Level (= Exit Level)									
Quanneation Type	Total	5	6	7	8	9	10			
Higher Certificate in [in]	≥120	120								
Advanced Certificate	≥ 120		120							
Diploma (without workplace-based credits)	≥ 240		120							
Diploma (with <u>up to 120 workplace-based</u> credits)	≥ 360		120							
Advanced Diploma	≥ 120			120						
Bachelor of (typically 3-years)	≥ <mark>360</mark>			120						
Bachelor of (typically 4-years)	≥ 480				120					
Bachelor Honours	≥ 120				120					
Postgraduate Diploma	≥ 120				120					
Masters	≥ 180					120				
Doctoral	≥ 360						360			

ECSA's menu options....

	Credits at Level										
Qualification Type	(mii	nima u	nless	shown = Exit Level)							
	Total	5	6	7	8	9	10				
HCert(Eng) ()	140	120	En	gineering	Support	Occupatio	ons				
AdvCert(Eng) ()	140		120		Cand	idate					
Dip(EngTech)() ()	280*		120	Technician (*without <u>workplace-based</u> credits) (**with <u>workplace-based</u> credits)							
Dip(Eng) () ()	360 **		120								
AdvDip(Eng) () ()	140			120	0 Candidate						
BEngTech () ()(typically 3-years)	420			120	Technologist						
BEng () ()(typically 4-years)	560				120	Candi Engii					
BEngTech(Hons) () ()	140				120	**	**				

Why? Why would anyone do this?

• **CHE**:

However you look at it, the NDip to BTech to MTech is skipping a level somewhere. Let's get everything on the same levels.

• ECSA:

It doesn't *really* matter how much time you spend in school. It matters what you can *DO*.

One year of BTech isn't enough to change the things you can *do* in a fundamental, substantial way.

WIL (or rather WBL) is a means to an end, and a somewhat problematic one.

(These are NOT quotes, but my own interpretation!)

What are the things that make desirable graduates?

What are the things that make desirable graduates?

- Not just technical knowledge, which can always be referred to later
- Not just experience (WIL), which is not an end unto itself

What are the things that make desirable graduates?

- Not just technical knowledge, which can always be referred to later
- Not just experience (WIL), which is not an end unto itself

Abilities What can you do?

Understanding What can you apply?

Skills

Can you communicate? Can you solve problems?

Characteristics

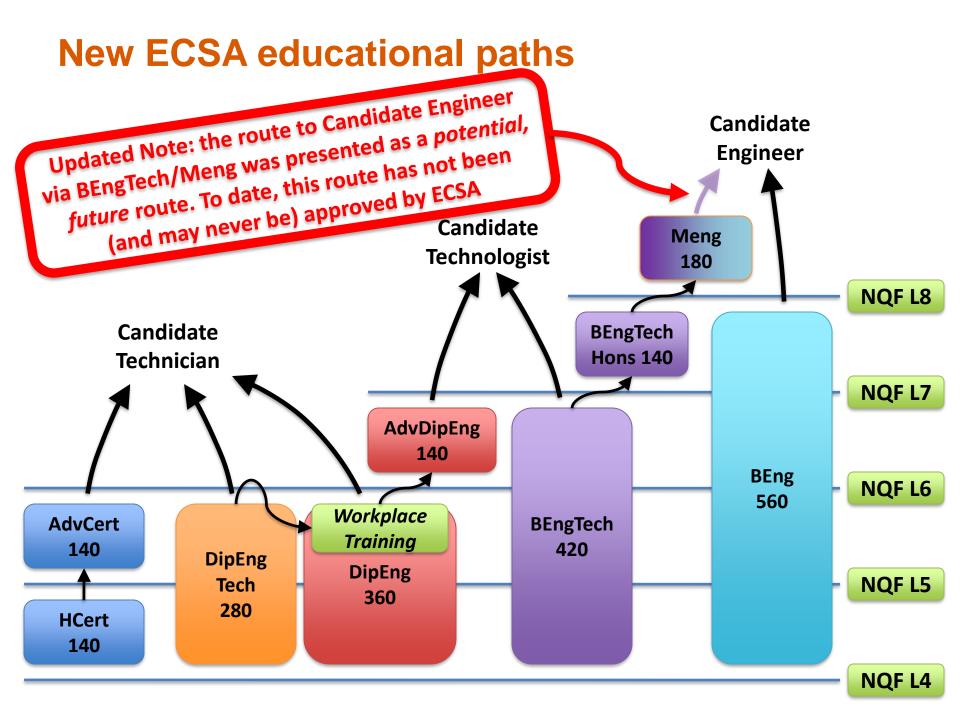
Are you hard-working? Do you work well with others?

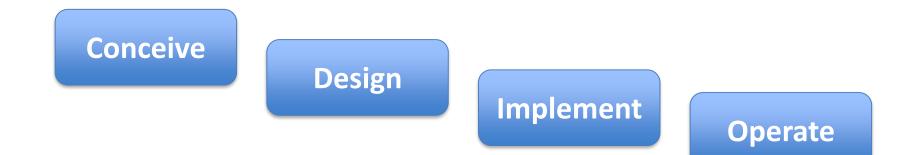
What makes a technologist?

From the ECSA standard:

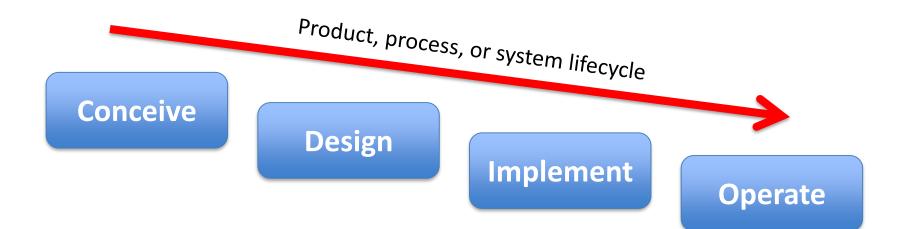
- "... solve broadly-defined problems
- ... develop components, systems, services and processes
- ... the application of technology in safety, health, engineering
- ... well-developed interpersonal skills
- ... work independently and responsibly
- ... specialized understanding of engineering sciences
- ... financial, commercial, legal, social and economic, health, safety and environmental matters."

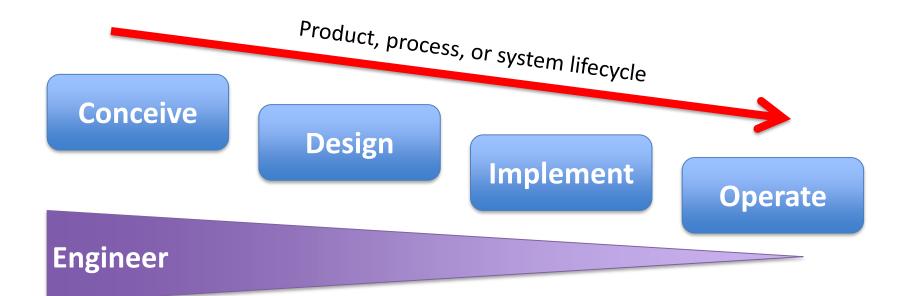
What makes a technologist?

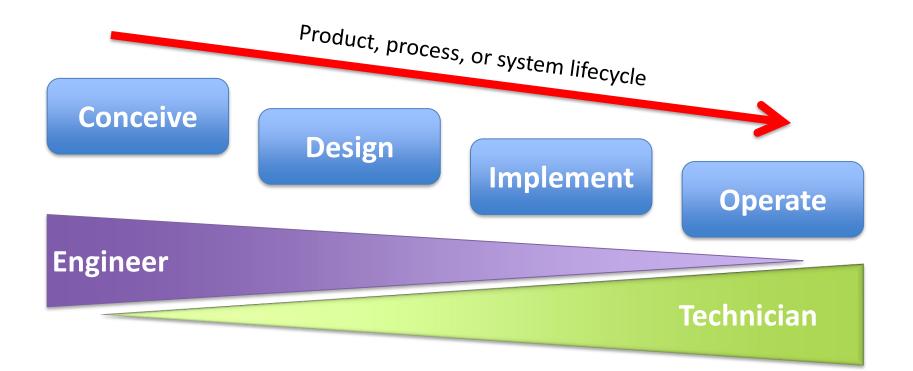


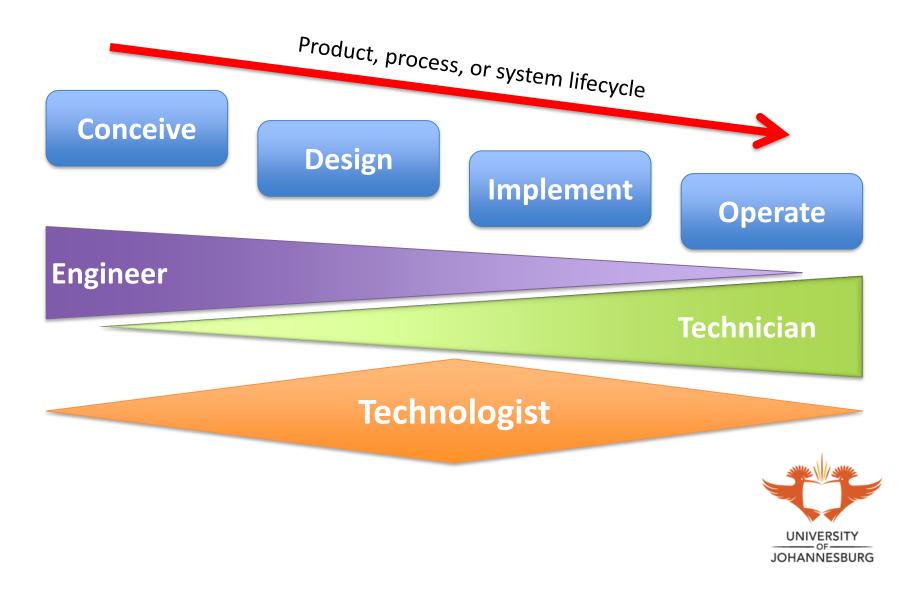


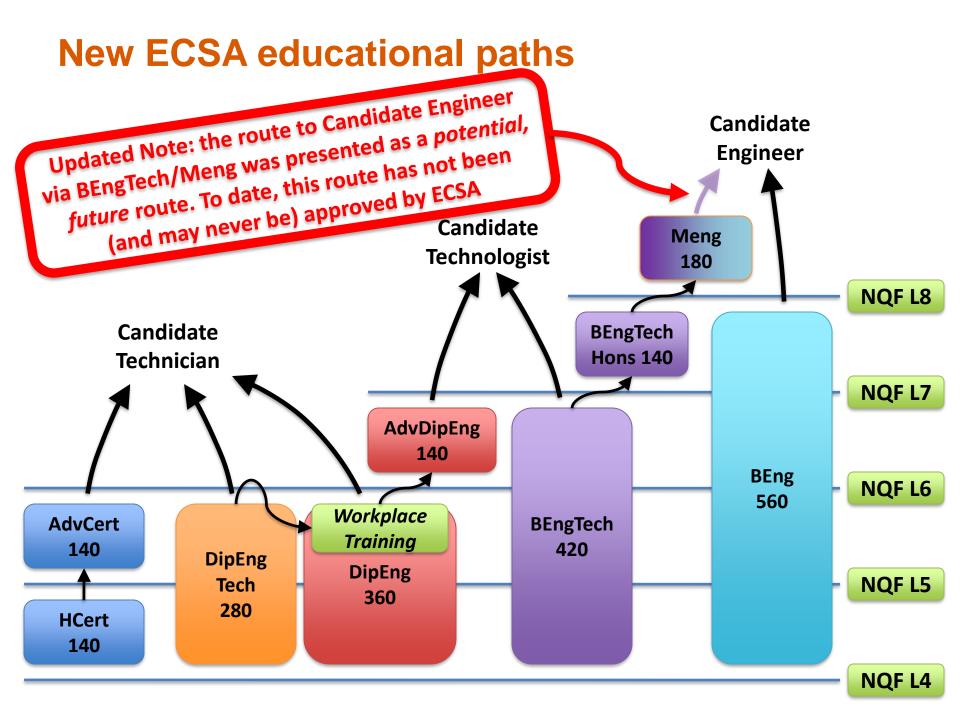
What makes a technologist?






Rethinking Engineering Education: The CDIO Approach; Crawley, E.F., Malmqvist, J., Östlund, S., Brodeur, D.R., Edström, K.; Springer; 2nd ed., 2014





How do you train a technologist?

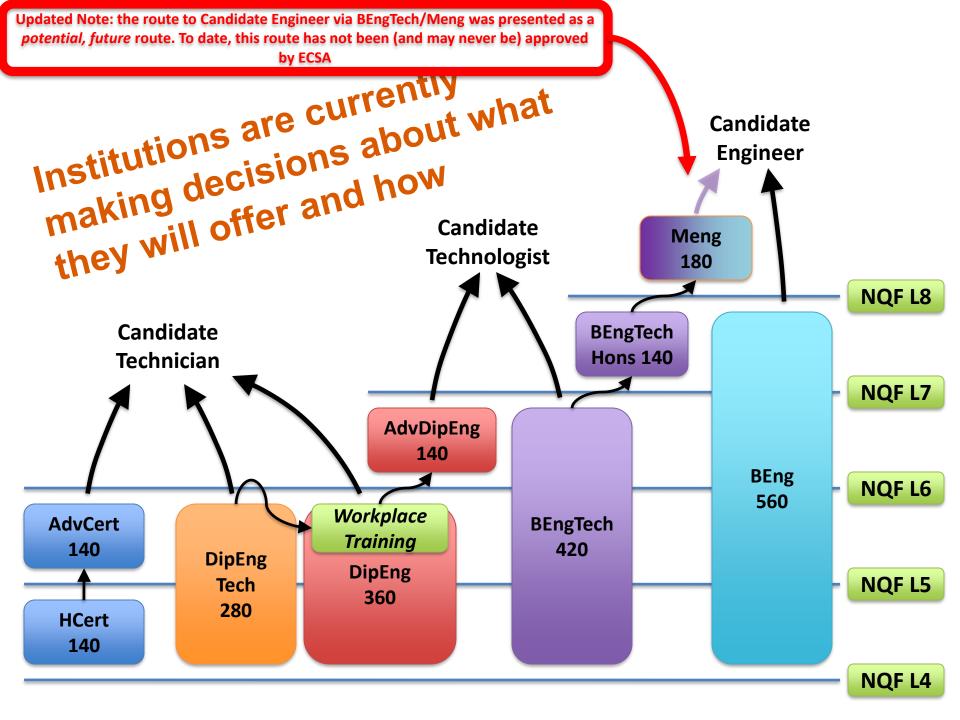
Compared to the Technician:

More science and mathematics Emphasis on problem solving and design Balance theoretical knowledge with applied Beyond established standards and codes

Compared to the Engineer:

More hands-on and practical focus Less front-loading of science and mathematics Balance theoretical knowledge with applied More direct industry contact and relevance

How do you train a technologist?


Compared to the Tech

More science

Eng) plus' ing and design etical knowledge with applied ond established standards and codes

Compared to the Engineer: More hands-on and prac Less front-load athematics medge with applied Bal moustry contact and relevance

Universities of Technology Staff Profile

Academic Staff - Augu	15												
	Institution												
	CPUT	CUT	DUT (D)	DUT (P)	MUT	NMMU	TUT	UJ	UNISA	VUT	WSU		
Number of Approved Posts	35	16	15	10	15	8	23	10	10	17		159	
Number of Vacancies	5	4	1	5	0	1	2	2	3	8		31	
Average Headcount	1400	1000	950	650	700	230	1250	550	1800	700		19.50	% vacant
Staff/Student Ratio (all posts filled)	40.00	62.50	63.33	65.00	46.67	28.75	54.35	55.00	180.00	41.18			
Staff/Student Ratio (current)	46.67	83.33	67.86	130.00	46.67	32.86	59.52	68.75	257.14	77.78			
			10% of	10% of					10% as				
			salary	salary					part of				
			(ECSA	(ECSA		20% of			packag				
Scarce Skills Intervention	х	Х	reg)	reg)	х	salary	х	х	е	Х	х		
Institution Pays for ECSA	٧	٧	Х	Х	٧	٧	٧	٧	V	٧	٧		
Institution pays for SAICE	٧	٧	٧	V	٧	٧	٧	٧	V	٧	٧		

UoTs: QUALIFICATIONS OFFERED

August 2015												
Institution												
Present	CPUT	CUT	DUT (D)	DUT (P)	MUT	ΝΜΜυ	TUT	IJ	UNISA	VUT	WSU	
N.Diploma	V	V	V	V	V	V	V	V	V	V	V	
B.Tech (Construction)	V	×	V	V	×	×	V	V	х	×	х	
B.Tech (Environmental)	×	×	×	×	×	×	V	V	V	×	х	51
B.Tech (Geotechnical)	×	×	×	×	×	×	V	V	×	×	х	Current Nated 151 Qualifications
B.Tech (Structures)	×	×	V	×	×	×	V	V	V	V	х	Vat6 cati
B.Tech (Transportation)	V	V	V	V	×	V	V	V	×	V	V	nt N alifi
B.Tech (Urban)	V	V	V	V	×	V	V	V	V	V	х	Qua
B.Tech (Water)	V	V	V	V	×	×	V	V	V	V	V	5 G
M.Tech	V	V	V	V	×	V	V	V	×	V	х	
D.Tech	V	V	V	V	×	×	V	V	×	V	х	
					Ins	titution						
FUTURE	CPUT	СПТ	DUT (D)	DUT (P)	мит	ΝΜΜυ	TUT	IJ	UNISA	VUT	VSU ()
Certificate	√*	×	×	×	×	×	х	×	×	×	×	
Higher Certificate	×	×	×	×	×	×	√*	×	х	×	×	
Advanced Certificate	×	×	×	×	×	×	×	×	V	×	×	
Diploma (280)	×	V	×	V	×	×	×	×	V	×	×	suo
Diploma (360)	V	×	×	×	V	×	×	V	×	V	V	New HEQSF Qualifications
Advanced Diploma	V	×	×	V	V	×	×	×	V	V	V	lifi
Post Graduate Diploma	×	×	×	×	×	×	×	×	×	V	×	Qua
Bachelor of Eng Tech (BET)	V	V	V			V	V	V	?		?	SF (
(Earliest year of first offering)	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	ĔŎ
Bachelor of Engineering										V		⊥ ≯
(Earliest year of first offering)										2019		Ne
Honours Degree	V	٧	V	×	х	V	٧	V	V		х	
Masters Degree	V	V	V	??	х	V	V	V	V	V	х	
Doctoral Degree	V	V	V	??	х	٧	V	V	V	V	х	
V* indicates certificate to be used as alternative access route in association with TVET's												

UNIVERSITY OF JOHANNESBURG

BACHELOR OF CIVIL ENGINEERING TECHNOLOGY

	CRITERIA	SEMESTER 1	CREDITS
	1	MATHS 1A	14
	2	BASIC SCIENCE (APPLIED MECHANICS) 1A	14
	6	COMMINUCATION SKILLS 1A	7
	5	COMPUTER SKILLS 1A	7
	3	DRAWING 1A	7
\sim	7	CITIZENSHIP	7
	3	SURVEY 1A	7
	2	STATISTICS 1A	7
7			70
	CRITERIA	SEMESTER2	<u>CREDITS</u>
	1	MATHS 1B	14
	2	SCIENCE 1B (FLUID MECHANICS)	7
	2	GEOLOGY 1B	7
	5	COMPUTER AIDED DRAWING 1B	7
	6	MANAGEMENT 1B	7
	3	THEORY OF STRUCTURES 1B	14
	3	SURVEY 1B	7
	3	CONSTRUCTION METHODS AND SAFETY 1B	7
			70

	CRITERIA	SEMESTER 3	CREDITS
	1	MATHS 2A	14
	3	GEOTECHNICAL ENGINEERING 2A	14
	6	MANAGEMENT (HUMAN CAPITAL) 2A	7
	3	CONCRETE TECHNOLOGY 2A	14
	3	TRANSPORTATION ENGINEERING 2A	14
	3	HYDRAULICS 2A	14
с С			77
YEAR 2			
Ш	CRITERIA	SEMESTER 4	CREDITS
	1	MATHS 2B (COMPUTATIONAL MATH)	14
	3	GEOTECHNICAL ENGINEERING 2B	14
	6	DOCUMENTATION 2B	7
	3	STRUCTURAL ANALYSIS 2B	14
	3	TRANSPORTATION ENGINEERING 2B	14
	3	HYDROLOGY 2B	14
			77

	<u>CIVIL</u>	COURSE (ELECTIVE OPTION)			<u>S</u>	TRUCTU	IRAL COURSE (ELECTIVE OPTIO	<u>) (N)</u>
	CRITERIA	SEMESTER 5	CREDITS			CRITERIA	SEMESTER 5	CREDITS
	4	WATER RETICULATION DESIGN 3A	14			4	REINFORCED CONCRETE 3A	14
	6	CONTRACT MANAGEMENT 3A	14			4	STRUCTURAL STEEL 3A	14
	4	INTRO REINFORCED CONCRETE & STE	14			4	TIMBER AND MASONRY DESIGN 3A	14
	3	TRANSPORTATION 3A	14			3	STRUCTURAL ANALYSIS 3A	14
\mathbf{c}	6	PROJECT MANAGEMENT 3A	14	α	\cap	6	PROJECT MANAGEMENT 3A	14
K			70	-	-			70
EA				VEAD				
Ц					1			
\succ	CRITERIA	SEMESTER 6	CREDITS			CRITERIA	SEMESTER 6	CREDITS
	7	PRINCIPLES OF SUSTAINABILITY 3B	14	-		7	PRINCIPLES OF SUSTAINABILITY 3B	14
	7	ETHICS AND COMMUNITY STUDIES 3B	7			7	ETHICS AND COMMUNITY STUDIES 3B	7
	3	WATER & WASTE WATER ENGINEERIN	14			4	PRESTRESSED CONCRETE 3B	14
	5	COMPUTER AIDED DESIGN CIVIL 3B	14			3	STRUCTURAL ANALYSIS 3B	14
	4	CAPSTONE DESIGN PROJECT 3B	28			5	COMPUTER AIDED DESIGN STRUCT 3B	14
			77			4	CAPSTONE DESIGN PROJECT 3B	14
		COMMON SUBJECTS FOR ELECTIVE OF	PTIONS					77
		ECSA prescribed type of credit	CREDITS	<u>ECSA</u>	<u>\</u>		ECSA prescribed type of credit	CREDITS
	1	MATHS	56	42		1	MATHS	56
	2	BASIC SCIENCE	35	28		2	BASIC SCIENCE	35
	3	ENGINEERING SCIENCE	182	140		3	ENGINEERING SCIENCE	182
		ENGINEERING DESIGN	56	49			ENGINEERING DESIGN	70
		COMPUTER/CAD	28	21			COMPUTER/CAD	28
	6	COMPLIMENTARY A	56	14		6	COMPLIMENTARY A	42
	7	COMPLIMENTARY B	28	14		7	COMPLIMENTARY B	28
		TOTAL CREDITS	441				TOTAL CREDITS	441

Comparison of Engineering Qualifications

Table 1: Minimum credits in knowledge areas

	Diploma	BET	BEng
Mathematical Sciences	35	42	56
Natural Sciences	28	28	56
Engineering Sciences	126	140	180
Engineering Design	28	49	72
Computing and IT	21	21	
Complementary Studies	14	28	56
Work Integrated Learning	30		
Subtotal	282	308	420
Re-allocation above areas	78	112	140
Total credits	360	420	560

