South African asphalt mix design manual Sabita asphalt manual

25th ROAD PAVEMENTS FORUM

Ocean View Hotel, Strand, Western Cape 7 & 8 May 2013

Joseph Anochie-Boateng, Benoit Verhaeghe CSIR Built Environment

our future through science

© CSIR 2013

Introduction

- Manual will replace existing guidelines for the design of asphalt mixes in South Africa
- Overall intention is to move from empirical-based design towards performance related design of asphalt materials
- Move is in line with international best practice and also enables the formulation of national specifications

Highlights

Item	Current practice	Proposed
Binder specification	Penetration (Pen)	Performance grade (PG)
Aggregate grading	СОТО	Bailey method
Mix types	COTO (e.g., coarse/medium continuous; open graded; gap/semi-gap; SMA etc)	Only few mix types (<u>Coarse</u> , <u>Fine, SMA</u>)
Binder content	Film thickness	Richness modulus
Optimum binder content	Marshall strength, VMA, voids, density, etc.	Superpave volumetrics; permanent deformation and fatigue characteristics
Mix performance evaluation	Marshall flow, stability, ITS,TSR, dynamic creep, etc.	Workability, durability/TSR, dynamic modulus, flow number, fatigue
Lab compaction	Marshall	Gyratory

Traffic classification

Design traffic [ESALs]*	Description
< 0.3 million	Low/Light
0.3 to 3 million	Medium
3 to 30 million	Heavy
≥ 30 million	Very heavy

* ESAL = Equivalent Single Axle Load

© CSIR 2013

Binder selection

7-Day average maximum asphalt temperatures

our future through science

© CSIR 2013

Binder selection

Minimum asphalt temperatures

Binder selection

PG Binder selection guideline

C	< 10 million ESALs				
5	AND Traffic speed > 70 km/h				
L	10 – 30 million ESALs				
п	OR Traffic speed 20-70 km/h				
	> 30 million ESALs				
V	 OR Traffic speed 20-70 km/h > 30 million ESALs OR Traffic speed < 20 km/h > 30 million ESALs 				
E	> 30 million ESALs				
	AND Traffic speed < 20 km/h				
	S H V E				

S = standard; H = heavy; V = very heavy; E = extreme

Aggregate selection

- Based on number of recommended tests and criteria
- Bailey method grading and packing analysis
 - Criteria are set based on unit weights, coarse and fine aggregate ratios

Mix design levels

Level IA: Low volume roads

Level IB: Modified Marshall

Level II : Performancerelated for medium to high volume roads

Level III : Performancerelated for high volume roads

- Low to medium safety and economic consequences in case of premature mix failure
- IA: < 0.3 million ESALs
- IB: 0.3 to 3 million ESALs
- IA: Modified Marshall asphalt design
- IB: Volumetric design with empirical asphalt performance tests
- IB: PG selection of binder; Bailey method for aggregate design
- Medium to high safety and economic consequences in case of premature mix failure
- 3 to 30 million ESALs
- Involves Level IB volumetric design
- PG selection of binder; Bailey method for aggregate design
- Performance-related laboratory testing to select optimum mix design
- High safety and economic consequences in case of premature mix failure
- >=30 million ESALs
- Involves Level IB volumetric; full scale Level II laboratory testing
- Pavement analysis to select optimum mix design

Mix design process – Level I

Mix design process – Levels II & III

Performance related tests

Property	Test conditions	Min no. of specimens	Test method
Workability	Superpave gyratory compaction	3	ASTM D 6925
Durability	Modified Lottman test conditions	6	ASTM D 4867M
Stiffness	Dynamic modulus at chosen test temperature and frequency	5	AASHTO TP 79
Permanent deformation	Flow number (FN) permanent deformation at chosen test temperature and loading frequency	3	AASHTO TP 79
Fatigue	Four-point beam fatigue test at chosen test temperature, frequency and strain levels	9	AASHTO T 321

Proposed workability criteria

Mix type	Gyrations	Voids
Fine	25	$0 < V_{25} - V_{des} < 2$
Coarse	25	$0 < V_{25} - V_{des} < 2$
SMA	25	$0 < V_{25} - V_{des} < 2$
HiMA-Class 1	45	V ₄₅ ≤ 10%
HiMA-Class 2	45	V ₄₅ ≤ 6%

Air voids content after 300 gyrations

	Gyratory voids [%]	Corrected to actual density [%]
Mix 1: KZN BTB (A-P1)	3.6	1.4
Mix 2: W/C med continuous (60/70)	9.3	6.7
Mix 3: Gauteng 9.5 med cont. (60/70)	3.9	2.2
Mix 4: KZN Type D (60/70)	2.5	1.7
Mix 5: KZN Type D WMA (A-E2)	2.9	0.9

• Workability criteria?

Dynamic modulus results

Permanent deformation @ 40°C

Tempearture 40°C								
		Mix1	Mix2	Mix3	Mix4	Mix5		
Unconfined	Average Flow number	3993	1027	561	669	622		
	Average PD at Flow (mm)	1.128	1.745	2.968	3.835	4.184		
Confined	Average Flow number	6070	1107	64	1001	680		
	Average PD at Flow (mm)	1.092	1.381	2.529	3.308	4.887		

Mix design criteria- 4PT beam fatigue

Link to pavement design

Hirsch predictive equation for dynamic modulus

$${}^{*}|_{mix} = P_{c} \left[4,200,000 \left(1 - \frac{VMA}{100} \right) + 3 | G^{*}|_{binder} \left(\frac{VFB \times VMA}{10,000} \right) \right] + \frac{1 - P_{c}}{\left[\frac{\left(1 - \frac{VMA}{100} \right)}{4,200,000} + \frac{VMA}{3VFB | G^{*}|_{binder}} \right]}{4,200,000} + \frac{VMA}{3VFB | G^{*}|_{binder}} \right]$$

$$P_{c} = \frac{\left(20 + \frac{VFB \times 3 | G^{*}|_{binder}}{VMA} \right)^{0.58}}{650 + \left(\frac{VFB \times 3 | G^{*}|_{binder}}{10,000} \right)^{0.58}}$$

650 +

VMA

Link to pavement design

 Level III mix design – full scale laboratory testing to develop dynamic modulus master curve

Link to pavement design

 Establish model parameters (k_{is}) for permanent deformation and fatigue models

$$\varepsilon_{\rm p} = k_1 \times N^{k_2} T^{k_3} \sigma_d^{k_4}$$

$$N_f = k_1 \left(\frac{1}{\varepsilon_t}\right)^{k_2} \left(\frac{1}{E}\right)^k$$

Fatigue model

© CSIR 2013

QC & QA

QC and QA aspects cover

- Laboratory mix design
- Plant trial
- Construction of trial paving section
- Site paving

Milestones

Activity	Completion date	Status
1. Phase I (Establishment)	30 Dec 2011	Completed
2. Phase II (State-of-the-art study)	31 July 2011	Completed
 Laboratory testing to develop criteria (seven aggregates, 13 mixes) 	21 Feb 2013	Completed
4. First draft design manual	31 March 2013	Completed
5. Send draft manual for review	15 April 2013	Completed
 Incorporate comments, suggestions in 1st draft 	01 June 2013	In progress
7. Final draft	01 Sept 2013	
8. Phase IV (Dissemination)		

© CSIR 2013

HiMA Long-Term Pavement Performance Testing

25th ROAD PAVEMENTS FORUM

Ocean View Hotel, Strand, Western Cape 7 & 8 May 2013

Benoit Verhaeghe, Tso Nkgapele CSIR Built Environment

South Coast road HiMA section Long Term Pavement Performance study

Survey performed every 6 months for 2 years

- Visual inspection
- FWD and profilometer survey

Example of visual assessment rating

VISUAL ASSESSMENT											
Date		05/04/2013									
Surface Type	SMA	SMA									
Lane / Direction	Slow NorthBound										
Panel / Chainage	150 - 100 metres from intersection										
Texture	Fine										
Voids	Varving - None to Few										
		Degree)			E	xtent		المسمعة	۱۸ <i>۱</i> : ما دام	
	Slight			Severe	Slight			Severe	Length	Width	Number
Mechanical Failure	0	1 2	3	4	5 1	2	3	4 5			
Other Failure	0	1 2	3	4	5 1	2	3	4 5			
Bleeding/Flushing	0	1 2	3	4	5 1	2	3	4 5	on wheel p	aths	
Surface Cracks	0	1 2	3	4	5 1	2	3	4 5			
Binder Condition	0	1 2	3	4	5 1	2	3	4 5			
Aggregate Loss	0	1 2	3	4	5 1	2	3	4 5			
Cracks Blocks	0	1 2	3	4	5 1	2	3	4 5			
Cracks Longitudinal	0	1 2	3	4	5 1	2	3	4 5			
Cracks Transverse	0	1 2	3	4	5 1	2	3	4 5			
Cracks Crocodile	0	1 2	3	4	5 1	2	3	4 5			
Cracks Parabolic	0	1 2	3	4	5 1	2	3	4 5			
Pumping	0	1 2	3	4	5 1	2	3	4 5			
Rutting	0	1 2	3	4	5 1	2	3	4 5			
Undulation/Settlement	0	1 2	3	4	5 1	2	3	4 5			
Edgebreak	0	1 2	3	4	5 1	2	3	4 5			
Potholes	0	1 2	3	4	5 1	2	3	4 5			
Delamination	0	1 2	3	4	5 1	2	3	4 5			
									Number of	Patchs & s	size
Patching	0	1 2	3	4	5 1	2	3	4 5			
									Influ	encing Fac	tors
Riding Quality	0	1 2	3	4	5 1	2	3	4 5			
Skid Resistance	0	1 2	3	4	5 1	2	3	4 5	Bleeding		
Surface Drainage	0	1 2	3	4	5 1	2	3	4 5			
Side Drainage	0	1 2	3	4	5 1	2	3	4 5			

 $\boldsymbol{\mathsf{G}}$

R

20 months survey (April 2013)

- Overall condition of the pavement is still good
- Few defects of degree not more than 3 (condition not yet warning)
- SMA is flushing in places, almost voidless, loss of texture
- Fuel spillages are a frequent occurrence on section
- Drainage issues especially on the bridge
- No indication of structural damage to the HiMA layer yet
- FWD & profile measurements recently completed, analyses of data pending

Photos taken during inspection

• HiMA section & old section

- General impression
 Flushing in places (wheeltracks)
- Texture

Photos taken during inspection

Photos taken at intersection

- General impression
- Drainage issues
- Deformation with aggregate loss, just at intersection

Thank you

our future through science