

ROAD PAVEMENTS FORUM (RPF) EIGHTEENTH MEETING CSIR INTERNATIONAL CONFERENCE CENTRE, PRETORIA Wednesday NOVEMBER 11, 2009

Integration of Vehicle Tyre -Pavement Contact Stress Data in the South African Pavement Design Method (SAPDM)

Presenter: M De Beer

SOUTH AFRICAN Pavement Design Method Improving the structural design model

W.I.P on: Integration of Vehicle-Pavement Contact Stress (Tyre) Data in SAPDM

Tyre-Contact Stress Information System (T-CSIS) [not SAPEM !]

Basic Layout of Presentation:

Background on SAPDM-A-1;

- Part of Probabilistic Design methodology;
- Project A-1: ...Tyre Contact Stress (...Is not equal to Tyre Inflation Pressure (TiP)) !;
- New tyre Models;

ROADS AGENCY

- Project C-1: Mechanistic Analysis ..improved tyre models..(..."GiGo");
- Tyre Inflation Pressure (TiP) and Tyre Contact Stress;
- Some Conclusions.

18th

Revision of the Flexible Pavement Design Method – Project A-1: T-CSIS

	Drojaat Managamant			
Research area	Project title	Project number	<u>Contract</u> <u>or</u>	<u>Project</u> <u>leader</u>
Integration project	Integration of design subsystems and methodologies into an integrated design system	SAPDM/ILP	PMC	<u>Dr H L</u> <u>Theyse</u>
Pavement Performance Information System	The development and population of a pavement performance information system	SAPDM/PPIS	MAS	<u>Dr A Hefer</u>
Traffic demand analysis	A tyre-pavement contact stress information system	SAPDM/A-1	CSIR	Prof M de Beer
	A traffic volume and axle load information system	SAPDM/A-2	TE	<u>Dr S C van</u> <u>As</u>
	Guidelines on conducting traffic surveys and processing the data for the purpose of pavement design	SAPDM/A-3	TE	<u>Dr S C van</u> <u>As</u>
	The effects of vehicle dynamics and vehicle speed on traffic input to the design method	SAPDM/A-4	CSIR	<u>Prof W</u> <u>Steyn</u>
Material resilient response models	Resilient response models for unbound material	SAPDM/B-1a	PMC	<u>Dr H L</u> <u>Theyse</u>
	Resilient response models for bituminous material	SAPDM/B-1b	CSIR	<u>Mr B</u> Verhaeghe
	Resilient response models for stabilised material	SAPDM/B-1c	CSIR	<u>Dr M</u> Mgangi

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

TYRE LOADING & TYRE PRINTS...

our future through science

Project SAPDM/A-1: Tyre Contact Stress Information System (T-CSIS)

...The devil is (always) in the detail...

18th

Project SAPDM/A-1: Tyre Contact Stress Information System (T-CSIS)

Objectives

ROADS AGENCY

- Develop a "TyreStress viewer" which will eventually be the T-CSIS – See Demo;
- Up to 10 relevant tyre types and conditions included (22 available);
- SIM Data include measured as well as interpolated data for the non-measured cases- this is done based on a higher order (max 7th) polynomial curve fitting procedure (constants saved & used for interpolation);
- Output of A-1: T-CSIS = Input for C-1

18th

Controlled SIM data (10 typical Tyres, SA) for T-CSIS

18th RPF

	Tyre No.	Tyre Type and usage with SIM device and HVS road testing	Date of measurement	Number of X, Y, Z Data files (with repeats)	Notes
	SA 01	HVS-SIM only on smooth tread: Cross-Bias 14 ply Tyre 10 x 20 (HVS up to 1994)	1994	48	SA - HVS Cross-Bias 14 Ply
	SA 02	HVS-SIM & tests: Cross-Bias 14 ply Tyre 11 x 20 (HVS since 1995)	1995	357	SA - HVS Cross-Bias Ply
. 1 W	SA 03	HVS-SIM only: Wide Base Tyre: Goodyear 425/65 R22.5 (Radial)	1996	279	SA - HVS Radial
	SA 04	HVS-SIM only: Michelin E-22.5 315/80 R22.5 (SA - SIM Only 1996)	1996	270	SA - HVS Radial
	SA 05	HVS-SIM & tests: Continental 11 x R22.5 Radial (HVS since 1995)	1999	342	SA - HVS Radial
	SA 06	HVS-SIM & tests: Firestone 12R22.5 G391 (Radial) (2004)	2004	546	SA - HVS Radial
	SA 07	HVS-SIM & limited tests: Goodyear 315 /0 R22.5 (Radial) G391 (2004)	2004	315	SA - HVS Radial
	SA 08	HVS-SIM & tests: Firestone 12R22.5 G391 (Radial) (2006)	2006	329	SA - HVS Radial
	SA 09	HVS-SIM & tests: Goodrich Aircraft BF tyre (South Africa)	2006	63	SA - HVS
teal ;	SA 10	HVS-SIM & limited tests: Goodyear 315/80 R22.5 (Radial) G391 (2006)	2006	609	SA - HVS Radial
				3158	

Revision of the Flexible Pavement Design Method – Project A-1: T-CSIS

..A-1 needs to link with Project SAPDM/C-1:

Mechanistic Analysis of complex contact stress

Complex contact stresses

- Input options for data from Tyre Contact Stress Information System (T-CSIS) - Project A-1
 - Status
 - Generate <u>equivalent</u> uniformly distributed contact stress using a circular shape for the tyre load – *done (TyreStress)*
 - Generate <u>"staggered"</u> uniformly distributed contact stress to simulate the "n" and "m" shaped contact stresses. – under development
 - GAMES to allow for different input options;
 - Report on the input load/stress options.

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

213.4.4.

Complex Contact Stresses: 3D Data: A-1 to C-1

Objective

 Input options for data from Tyre Contact Stress
Information System (T-CSIS) - Project A-1 (10 truck tyre types and conditions included in Beta-TyreStress Software)

18th

our future through science

Add Address

Normal 40 kN loading (80 kN Axle) on Tyres @ 520 kPa:

Firestone 12 x R22.5 G391 (SA - HVS)-2006

Direction: (Z) Inflation pressure: 520 (kPa) Load per tyre: 20 (kN)

SIM Measured Tyre Load (Z): 18.5 (kN)

Estimated contact area: 483.1 (cm²) Equivalent uniform contact stress: 383.5 (kPa) Radius of equivalent circular area: 124.0 (mm)

SIM Measured Tyre Load (Z): 19.1 (kN)

Estimated contact area: 498.0 (cm²) Equivalent uniform contact stress: 383.9 (kPa) Radius of equivalent circular area: 125.9 (mm)

CSIR our future through science

18th

And in case of

40 kN - over-loading (160 kN Axle) on Tyres @ 520 kPa:

Firestone 12 × R22.5 G391 (SA - HVS)-2006

Direction: (Z) Inflation pressure: 520 (kPa) Load per tyre: 40 (kN)

SIM Measured Tyre Load (Z): 33.8 (kN)

Estimated contact area: 702.6 (cm²) Equivalent uniform contact stress: 481.3 (kPa) Radius of equivalent circular area: 149.5 (mm)

SIM Measured Tyre Load (Z): 38.6 (kN)

Estimated contact area: 723.2 (cm²) Equivalent uniform contact stress: 533.6 (kPa) Radius of equivalent circular area: 151.7 (mm)

18th

Overloading on Tyres:

Contact Patches: (square not circular)

MECHANISTIC APPROACH:

18th RPF

Finite Element Analysis (CSIR): Uniform vs Non-Uniform Stress

Equivalent Single Circular Contact Stress(Existing..)

18th

THE SOUTH AFRICAN NATIONAL ROADS AGENCY n-Shape: Staggered circular modeling (New....)

18th

RPF

Single tyre load: 20 kN; 520 kPa

Lotus E SmartSuite

Define plane for contour plot Vertical plane parallel to X-Z

Contour region centred at (mm)

Y offset from origin

х.

Plot parameter

Normal Stress ZZ

0

10

-

Z

0

File Help

M-Shape: Staggered circular modeling: New....

18th

M-Shape: Vertical Only - staggered circular modeling

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

M-Shape: Vertical Only - staggered circular modeling

18th

Idealization of measured Contact Stresses using staggered circles..

Project SAPDM/A-1: Tyre Contact Stress Information System (T-CSIS)

- New Beta Version of "TyreStress viewer" available on request - eventually be the T-CSIS (See Demo later);
- New:- Output of A-1: T-CSIS = Input for C-1 (See Demo later);

18th

New Viewer: 2 x Staggered Discs ("n")

our future through science

18th

TAXABLE INCOME.

New Viewer: 3 x Staggered Discs ("n")

Goodyear 315-80 R22.5 G391 (Steering -SA)-2004

Direction: (Z) Inflation pressure: 620 (kPa) Applied Vertical Tyre Load: 20 (kN)

SIM Measured Tyre Load (Z): 20.0 (kN)

Estimated contact area: 498.0 (cm²) Equivalent uniform contact stress: 402.0 (kPa) Radius of equivalent circular area: 125.9 (mm) Load (kN)=3.03139,14.1893,2.79634

Stress (kPa)=330.613,444.992,319.886 N Shape

18th

New Viewer: 2 x Staggered Discs ("m")

18th

New Viewer Export to me PADS (c-1): 3 x Staggered Discs ("m") - INTERIM

18th

RPF

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

New Viewer: Dual Tyres

1.101.000

Direction: (Z) Inflation pressure: 520 (kPa) Load per tyre: 15 (kN)

SIM Measured Tyre Load [Z]: 14.0 (kN)

Estimated contact area: 399.4 (cm²) Equivalent uniform contact stress: 351.3 (kPa) Radius of equivalent circular area: 112.8 (mm) Load (kN)=1.80547,10.0287,2.19678

Stress (kPa)=259.334,386.096,313.641 N Shape

18th

Muntitled - mePADS File Tools Setup Help Pavement Structure Loads and Evaluation Points Contour Plot Profile P Design location X Y 0 0 Load definition No of loads 14	lot Stresses and Strains No of evaluation positions 0 X Y Z Extra points Plot Copy Chart	
1 1.80547 0 0 0 RECT 0 F 2 0.3421 0 0 0 RECT 0 F 3 0.42886 0 0 0 RECT 0 F 4 5.22904 0 0 0 RECT 0 F 5 2.61452 0 0 0 RECT 0 F 6 0 0 0 0 RECT 0 F 7 0 0 90 0 RECT 0 F 8 1.83262 0 0 0 RECT 0 F 9 0.40238 0 0 0 RECT 0 F 10 0.41422 0 0 0 RECT 0 F 11 4.78168 0 0 0 RECT 0 F 12 2.39084 0	31.5%	X Y Z
1	28.0% 16.5% 20.6% 20	20.9% 27.6% 21.5% 21.5% 21.5% 225.508 (mm)
Calculate Pavement system changed. Recalculate!	oft P 🔀 Microsoft E 🏙 Firestone 1 M Untitled M Unt	itled ■ Desktop [※]

New Viewer Export to me PADS (c-1): 3 x Staggered Discs ("m") - INTERIM

	Vent end (M)	L Dave L a set	A	Territor Const	Char	2	Continuted	Char				D	Destruction (VD- ()	VD. C
++	Vert Load [KN]	Horz Load	Angle [1]	I orsion Load	Shap)e	Lentripetal	DECT		Moment Vert	Moment Horz	Pressure 101.057	Hadius [mm]	X Pos [mm]	Y Pos Im
2	1 69652	0	0	0	DECT	-	0	DECT	-	0	0	520 595	22 2074	120.02	0
2	0.268994	0	0	0	BECT	-	0	BECT	-	0	0	185 722	21 4716	-139 565	0
4	1 69653	0	0	0	BECT	-	0	BECT	-	0	0	520 595	32 2074	128.83	0
5	0.252712	0	0	ů.	BECT	-	0	BECT	-	0	0	174 48	21 4716	139 565	0
6	11 2144	0	0	ů.	BECT	-	n N	BECT	-	0	0	395 767	94 9715	0	n n
7	0	0	0	0	BECT	-	0	BECT	-	0	3 56567	43 7662	161.037	n n	0
8	0	n n	90	ů.	BECT	-	0	BECT	-	0	5.64781	69 3232	161.037	0	0

Tyre Inflation Pressure (TiP) and measured Contact Stress....

Seeking for a relationship between TiP and measured contact stresses.....

(~ 52 000 tyres measured on N3-TCC) with Stress-In-Motion (SIM) device in 2003/4)

Contact Stresses & TiP (Centre 60 %).....

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

~

18th

Ln (TiP) = 2,0855 + 0,6973Ln(AMVCS60)

Where:

TiP = Tyre Inflation Pressure (kPa); AMVCS60 = Average max vertical contact stress in centre 60 % of tyre;

(Best practical relationship form 9 possibilities investigated)

Linear Regress	ion Analysis								Residua
Titlo	Simple linear Mo	del							
Model	LinTiP ~ LinAMVC	960					0.5 -		
Regr Type	Linear						0.0		
Daramotore	(Intercent)	L pAMVCS60							
Values	2.0855	0.6973					0.0 -		<u> </u>
						sidu			8.0
Confidence	(Intercept)	LnAMVCS60				Ъ	-0.5 -		80
Std. Error	0.0635	0.0097							•
tvalue	32.8446	71.8267							
Pr(> t)	0.0000	0.0000					-1.0 +		
2.5%	1.9610	0.6783					5./	5	6.0
97.5% VIF	2.2100	0.7103							Fitt
Anova Table	(Intercept)	LnAMVCS60	Residuals					No	rmal Or
Sum Sq	23.57	1.13E+02	1.10E+02					140	
Dt	1	1	5047						
F value	1078.8	5159.1					4.0		
PI(2F)	0.0000	0.0000							
Regression	Statistics					tiles –	2.0		
5049		Number of Obser	vations			μaπ			
0.5055	0.5054	R-squared and Ad	djusted R-squared			g	0.0		
0.1478	0.1478	Standard deviation	n of residuals and \$	Std Error		Ē			
-4972.8499	-4953.2690	AIC/BIC				Ž	-2.0		
utocorrelation	Residuals							e a a a a a a a a a a a a a a a a a a a	
0 0000	Positive						-4.0 +		
0.0000	Non-zero						-6.0	-4.0	-2.0
1.0000	Negative							s	tandardis
	-								
Additional	Tests Shaniro-Wilk tes	t not performed							
0.0000	Breusch-Pagan	Test for Heterosce	dasticity			-			
0.1857	Bonferroni Adjus	tment Test for outli	iers				8.000 T		
						ŝ.	7 500		
Regr Data	Enter variable na	ames on first line		WEIGHT=	1.0000		7.500 T		
Data No	Weight	LNTIP	LnAMVCS60	TIP	AMVCS60	Ę	7 000		
1	1.00	5.394	5.485	220	241	1	7.000 T		
2	1.00	5.394	5.497	220	244	E E			
4	1.00	5 394	5.470	220	253	Less	6.500		
5	1.00	5.394	5 545	220	255	Ē			
6	1.00	5.394	5.541	220	255	l i i i i i i i i i i i i i i i i i i i	6.000 -		
7	1.00	5.394	5.553	220	258	1			
8	1.00	5.394	5.557	220	259	Ϋ́ε	5.500		
9	1.00	5.394	5.537	220	254	Ę			
10	1.00	5.394	5.617	220	275		5 000		
11	1.00	5.394	5.606	220	272		5.000 4		
12	1.00	5.394	5.591	220	268	-	5.00	00	5.50
13	1.00	5.394	5.489	220	242				LN(A
14	1.00	5.394	5.472	220	238				
15	1.00	5.394	5.464	220	236				

111111

- New Tyre models improved for SAPDM;
- Project A-1: T-CSIS progressing well;
- Tyre Data-Integration into Project C-1 (Mechanistic Design) possible;
 - Tyre Inflation Pressure (TiP) Very promising practical relationship found with contact stress(CS):
 - TiP = exp[k1+k2ln(CS)];
- Over-all progress approx. ~ 65 %;
- Suggest to test/evaluate beta version(s) with practice;

