16th Road Pavement Forum CSIR Conference Centre 11 – 12 November 2008

CONCRETE PAVEMENT REHABILITATION

Philip Joubert

Presentation Overview

Look at:

Restoration of pavement life in existing rigid pavement using techniques of **Cracking & Seating** or Rubblizing

Rehab. of Concrete Pavement

Typical Failed Pavements

Typical Failed Pavements

Typical Failed Pavements

Typical Decision Flow Diagram

1. CRACK AND SEAT (C&S)

Principles and Method of <u>Crack and Seat</u> Operations

Principle of Cracking & Seating

Objective of C & S

modify characteristics of rigid pavement:

into a more flexible structure,

BUT ALSO TO:

minimise asphalt overlay thickness :

by <u>retaining max pavement stiffness / strength</u>

C & S Technique - 1

- Produces shorter slabs
 •0.6 2m in length
- Retains structural integrity
- Induces fine, vertical, transverse cracks in JCP
- Reduces effective length of slab between joints.

C & S Technique - 2

- Size of slabs is effectively reduced
 Therefore:
- Horizontal strains from thermal movements:
 - distributed more evenly over pavement,
 - less likely to cause reflective cracks in HMA overlay
- Cracks induced in PCC slab so fine that:
 - load transfer between newly formed slabs = good
 - because of aggregate interlock.
- After cracking:
 - PCC segments firmly seated by heavy pneumatic tire roller
 - ensure no voids beneath PCC segments prior to overlay

Typical Equipment

8600 Badger Guillotine Breaker

20 ton Pneumatic Tyre Roller

Cracking & Seating Operation

Typical Induced Crack

Core taken from a 450mm thick pavement

Broken core showing good aggregate interlocking Crack should be vertical throughout depth of core

C & S @ Heathrow Airport

C & S @ Heathrow Airport

C & S Issues affecting performance

Foundation = firm with good seating

Too small slab size: accelerate cracking

Better in un-reinforced JCP

Method preferred for cracked/faulted

2. Rubblization (Asphalt Institute)

Process of:

- breaking / pulverising PCC pavement in-place
 into small, interconnected pieces (75 200mm)
- Serve as base course for HMA overlay.
- Deflections / weak spots:
 - filled with coarse aggregate
- Rubblized compact with steel roller
- The rubblizing process:
 - reduces slab to an granular base for overlay
 - eliminates all reflective cracking concerns

Distressed Concrete Mid-panel cracking

Water trapped below concrete

Before rubblization

After rubblization

Rubblization Method

- To meet specifications for concrete pavements:
- 1. Firstly break using guillotine
- 2. Then 16hammer Breaker
- 3. Then grid roller:
 - to further pulverize
 - to shape concrete particles at surface
 - to begin compaction process.
- 4. Final seating typically accomplished with:
 - 20-ton pneumatic-rubber tyre roller [PTR]

The rubblized layer stiffness:

• 700 - 3000MPa

Compared a typical high quality crushed aggregate base

• 500 MPa

Pre-cracking 500mm concrete

Pre-cracking pattern

Pre-cracking concrete

Rubblization

Completing the rubblization

Completing the rubblization

Surface after grid rolling

Surface after grid rolling

Test hole

Test hole

Paving with M/T Vehicle

Placing aggregate base layer

Concrete overlay in process

Sustainability

- No hauling or disposal costs
- Existing pavement retained saves natural resources
- Saves landfill space
- Expedites construction
- Environmentally friendly
- Cost-effective as rehabilitation technique.
- Existing concrete pavement stays in place
- Becomes base for new HMA pavement
- Reduce or eliminate need for new virgin aggregates.
- Weather delays minimised sub grade never opened

Goingnklome?

Project size

Minimum: 25 000m²
R30/m²
2 weeks on site