HMA Rut Challenge Current results and outputs

Wynand JvdM Steyn / Fred Hugo

Contents

- Background
- Progress
- Plan forward
- Current outputs

Background

- Objective to improve design guide for HMA
 - Forensic study done and reported
 - Rut resistance study currently being finalised
 - Fatigue and durability study planned

© CSIR 2008

- Studies include
 - Literature evaluation
 - Laboratory evaluation
 - Field evaluation
 - LTPP
 - APT

Progress

- Forensic study
 - Done and reported
- Rut resistance study
 - Standard HMA
 - APT and laboratory completed
 - Rut resistant HMA (1&2)
 - APT completed
 - Laboratory being completed
- Fatigue and durability study
 - Standard HMA
 - Rut resistant HMA (1&2)
 - Due to start in 2009

Plan forward

• Complete Level 1 analysis of RR1 and RR2

© CSIR 2008

- Perform Level 2 analysis of STD, RR1 and RR2 for all data
 - Laboratory, LTPP, APT
 - Provide provisional guidelines for rut resistant mixes
- Start with laboratory and APT on fatigue and durability sections
 - 2009
 - Current trafficked section
- Maybe WMA overlay

So What – main current outputs

- Design
- Construction
- Performance
- Laboratory tests

So What – main current outputs - Design

- 3 different continuously graded HMA mixes
- Mainly differed in terms of grading
- Same binder and similar binder content

HMA mix grading

So What – main current outputs - Construction

- Field data
 - Variation in the thickness
 - CoV 7% (60 mm), 9% (40 mm), 21% (25 mm)
 - Variation in density
 - BRD (25 mm) 2.433, (40 mm) 2.502, (60 mm) 2.546
- Quality control on site
 - STD HMA
 - Compaction was a major issue
 - Kept on compacting for a few hours
 - Density / void issue on different thicknesses
 - RR1
 - Relatively good construction
 - Voids variable
 - No major issues identified
 - RR2
 - Issue around variability of mixes

Figure 8: Bulk Relative Density determined from field cores

So What – main current outputs - Performance

• Performance

- Two lines of thought
- Micro level / Research level
 - Differences visible between mixes
 - Differences visible between conditions
 - Makes sense
- Macro level / Practical level
 - · Continuously graded mixes fell within a band
 - Some tertiary rutting
 - Need a different type of mix or change in binder type to improve rut resistance

our future through science

So What – main current outputs - Performance

- Increase in rut development rate at temperatures higher than 55°C clear – linked to softening point of the bitumen
- Contact stress pattern has a clear effect on the response of the HMA
 - currently developing relationships between σ and rut development
- Expected lives
 - Based on constant rut rates generally well performed
 - 40 mm 7 MESA; 60 mm 16 MESA
 - 50% increase in thickness together with increased density – lead to 76 to 90 % in expected life
 - Evaluate relative effects of thickness and density
 - Too thin is too little except if it is specifically designed
 - One failure mode (rut) NB

our future through science

Effect of HMA Density and Thickness

BRD and Thickness – strong + correlation BRD and Rut rate – strong – correlation

◆ TS 25 ■ CS 40 ▲ TS 40 × CS 60 ≭ TS 60

So What – main current outputs - Laboratory

- Immediate relevance
 - RTFOT successful simulating ageing of binder during production
 - Slab and gyratory compaction closer to field than Marshall
 - TWTT, HWTT provided consistent results
 - RSST-CH provided consistent results with other rut results
 - Dynamic creep unreliable for rut prediction •
 - Static creep test insensitive to sample condition
 - Marshall stability and flow did not correlate with rut • performance
 - Current permeability results not reliable

Main current MMLS results

- Field and lab MMLS have comparable rutting performance if conditions are similar
 - temperature, contact stress, load frequency
- Effect of Lateral Wander trafficking appears to be severe in thin asphalt layers similar phenomena than HVS
- Early life deformation very important in terms of structural composition, stiffness due to temperature and ageing influences
- HVS and MMLS performance comparable if stress, temperature profiles and load frequency are taken into account for specific conditions – may differ when AC conditions change

Overall comparison between all tests

Overall comparison between all tests

Summary

- A lot of data generated
- Most trends are making sense
- Comparisons between tests currently being developed and refined
- Mix design and construction a major part of the story

