European norms for Asphalt Concrete

CE marking in the Netherlands

Martin van de Ven

November 30, 2015

1

Technische Universiteit Delft

Contents

- CE marking
- Functional approach and pavement design in the Netherlands
- Example testing asphalt concrete (EN 13108-1)
- RAW 2015 (how does it work out)

- 6 Essential Requirements for the general safety of structures:
 - Mechanical resistance and stability
 - Safety in case of fire
 - Hygiene, health and the environment
 - Safety in use
 - Protection against noise
 - Energy economy and heath retention

Total package Asphalt

- 53 norms:
- 10 norms for mixtures:NEN-EN 13108 series: Bituminous mixes
 - 7 product norms
 - 1 norm for RA
 - 2 quality norms:
 - Type testing
 - Production control
- 43 norms for test methods (NEN-)EN 12697 series: Test methods for hot mix asphalt (all tests are CE normalized)

4

November 30, 2015

NEN-EN 13108 series

Norm	Description
NEN-EN 13108-1	Part 1 Aphaltconcrete
NEN-EN 13108-2	Part 2 Very thin ashalt concrete
NEN-EN 13108-3	Part 3 Soft Asphalt
NEN-EN 13108-4	Part 4 Hot Rolled Asphalt
NEN-EN 13108-5	Part 5 Stone Mastix Asphalt
NEN-EN 13108-6	Part 6 Gussasphalt
NEN-EN 13108-7	Part 7 Porous Asphalt
NEN-EN 13108-8	Part 8 Asphaltgranulate
NEN-EN 13108-20	Part 20 Type testing
NEN-EN 13108-21	Part 21 Factory Production Control
November 30, 2015	5

Possible tests according EN for stiffness and fatigue

Stiffness (EN 12697-26)	Fatigue (EN 12697-24)
 Two point bending test on trapezoidal specimens (2PB-TR) Threepoint bending test on prismatic specimens (3PB-PR) Indirect tension test on cylindrical specimens (IT-CY) Direct tension-compression test on cylindrical specimens (DTC-CY) Direct tension on cylindrical (DT-CY) or prismatic specimens (DT-PR) 	 Two point bending on trapezoidal specimens Two-point bending test on prismatic shaped specimens Three point bending test on prismatic shaped specimens Four-point bending test on prismatic shaped specimens Indirect tensile test on cylindrical shaped specimens.

CE marking asphalt (is off plant)

- Type testing with Declaration of Conformity (EN 13108-20)
- Factory Production Control with certification of production (EN 13108-21)

7

November 30, 2015

Initial Type Testing

- Possibility to choose in advance as a country:
 - Empirical line
 - Functional line
- ETA (European Technical Approval) and innovation
 - European Technical Approval for asphalt not defined in the productnorms.
 - ETA: declares product is fit for application.
 - Notified Body must be involved.

CE Marking

- Each mixture should have a CE marking
- This tells the client what type/quality of mixture he is buying
- Two methods:
 - empirical method
 - fundamental method

CE Marking empirical method

- Gradation
- Binder content
- Marshall values for airport mixtures
- Voids content
- Voids in mineral skeleton
- Voids filled with bitumen
- SMA, PAC and thin surfacings are rated in the Netherlands with this method. For these 3 mixture types there is no fundamental approach

CE Marking fundamental method for asphalt mixtures

- No specs anymore for:
 - composition
 - gradation
 - volumetrics
 - Marshall
- CE marking specifies stiffness, resistance to fatigue, permanent deformation and moisture resistivity

Test scheme for Type testing

November 30, 2015

Requirements for asphalt concrete (13108-1)

General	Functional
 Composition and grading Voids Water sensitivity Resistance against wear by spikes (cold climates) Resistance against permanent deformation (wheeltrack test) Resistance against fuels (airports) Resistance against de-icing (airports) 	 Stiffness Resistance against fatigue Resistance against permanent deformation (cyclic compression test)

Tests chosen in the Netherlands for roads

General properties (all	Functional properties
mixes)	(asphalt concrete)
Water sensitivity: •Indirect tensile test	Stiffness: •Four point bending (4pb) Fatigue: •Four point bending (4pb) Permanent deformation: •Triaxial test

November 30, 2015

Consequence: contractor needs also facility for producing slabs **FUDelft**

CE marking and design

- Starting point (assumption/hypothetis):
 - Mechanical properties of a mix are determined who are related to the same properties of the final product in the road

Choices for the Netherlands in relation to design

- Stiffness is determined at 20 C and 8 Hz (effective design temperature and mean speed heavy traffic)
- Fatigue at 20 C and 30 Hz (temperature is clear, 30 Hz in relation to test duration)
- Permanent Deformation: temperature and stress situation surface layer is different from base layers

Indirect tensile test: water sensitivity

- Monotonic test to failure
- Displacement controlled ($50 \pm 2 \text{ mm/min}$)
- Determination of indirect tensile strength

November 30, 2015

Four point bending test (4pb)

- Stiffness: frequency sweep (displacement controlled)
- Fatigue (displacement controlled)

Stiffness mastercurve at 20 C

Number of specimen	4 (+2 reserve)
Compaction	Slab compaction
Test temperature	20 C
Frequency	Frequency sweep (8 Hz compulsary)
Loading	Sine: displacement controlled 50 ±3 µm/m
Number of load repetitions	Approx. 100

Number of specimen	18
Compaction	Slab compaction
Test temperatuur	20 C
Frequency	30 Hz
Loading	3 strain levels (6 tests per strain level)
Fatigue life	Repetitions reduction stiffness to half of its initial value

November 30, 2015

Example fatigue line (1 temp, 1 frequency) on log-log scale

Resistance against permanent deformation

- Dynamic triaxial test
- Determination of elastic and/or visco-plastic deformation characteristics at realistic conditions

22

November 30, 2015

Triaxial test

Surface layer	Binder, base layer
gyrator	gyrator
100 mm	100 mm
60 mm	60 mm
80 mm	80 mm
15° C	15° C
50° C	40° C
haversine	haversine
0.4 s	0.4 s
0.6 s	0.6 s
0.30 MPa	0.20 MPa
0.15 MPa	0.05 MPa
0.75 MPa	0.45 MPa
10.000	10.000
	Surface layer gyrator 100 mm 60 mm 80 mm 15° C 50° C haversine 0.4 s 0.6 s 0.30 MPa 0.15 MPa 0.75 MPa 10.000

Creep curve triaxial test: slope determination

Permanent strain

Number of repetitions

November 30, 2015

Original classes used in 2005

Class	А	В	С	D	E	F
ITSR [%]	≥ 90	≥ 80 en < 90	≥ 60 en < 80	≥ 40 en < 60	≥ 20 en < 40	< 20

Class	А	В	С	D	E	F
Stiffness [MPa]	≥ 14000	≥ 9000 en < 14000	≥ 5500 en < 9000	≥ 3600 en < 5500	≥ 1500 en < 3600	< 1500

Class	A	В	С	D	E	F	G	Н
Fatigue ε ₆ [μm/m]	≥ 310	≥220 en < 310	≥160 en < 220	≥135 en < 160	≥115 en < 135	≥100 en < 115	≥ 50 en < 85	< 50

Class	А	В	С	D	E	F	G	Н	
f	< 0.1	≥ 0.1	≥ 0.2	≥ 0.4	≥ 0.8	≥ 1.2	≥ 1.6	≥ 2.0	
November	30, 2015	en	en	en	en	en	en		
[µ/s]		< 0.2	< 0.4	< 0.8	< 1.2	< 1.6	< 2.0	The second se	
								TUD	elf

Duration Type testing and system approach

- Duration type testing: estimation 30 days
- How important is a shorter duration for a producer???
- Family Approach is also an option to reduce testing programme (13108-20)
- If CE marking is approved for a mix this is valid for 5 years (under the condition...). This is the same time period as the cycle of RAW evaluation.
- Each 5 years the results will be evaluated and reconsidered by a committee

RAW 2015: properties for DAC surfacing and base layers

asfaltbetonmengsels voor deklagen Asphalt concrete mixes for surfacings								
eigenschappen Properties	categorie-indeling eigenschappen	(zie tabel 81.2.15 voor ver	klaring categorie-indeling)				
	DL-IB	DL-A	DL-B	DL-C				
V _{min} ten minste Voids minimum	2,0	2,0	2,0	2,0				
V _{max} ten hoogsteVoids maximum	6,0	4,0	6,0	6,0				
ITSR ten minste ITSR at least	80	80	80	80				
S _{min} ten minste Stiffnes min	5500	3600	4500	5500				
S _{max} ten hoogste Stiffness max	11000	7000	9000	11000				
f _e ten hoogste Perm. Def.	0,2	4,0	1,4	0,6				
ϵ_6 ten minste fatigue	100	130	115	100				

asfaltbetonmengsels voor onderlagen Base layers						
eigenschappen	categorie-indeling ei	categorie-indeling eigenschappen (zie tabel 81.2.15 voor verklaring categorie-indeling)				
	OL-IB	OL-A	OL-B	OL-C		
V _{min} ten minste	2,0	2,0	2,0	2,0		
V _{max} ten hoogste	7,0	7,0	7,0	7,0		
ITSR ten minste	70	70	70	70		
S _{min} ten minste	7000	4500	5500	7000		
S _{max} ten hoogste	14000	11000	14000	14000		
f _e ten hoogste	0,2	1,4	0,8	0,4		
ε ₆ ten minste	90	100	80	90		

RAW 2015: SMA

 Tabel 81.2.8
 Korrelverdeling van steenmastiekasfalt (% m/m)

SMA-NL 5: 4,0 % (V/V);
SMA-NL 8A: 4,0% (V/V);
SMA-NL 8B: 5,0% (V/V);
SMA-NL 11A: 4,0% (V/V);
SMA-NL 11B: 5,0% (V/V).

door zeef	SMA-NL 5	SMA-NL 8A	SMA-NL 8B	SMA-NL 11A	SMA-NL 11B
11,2 mm		100	100	92 - 100	92 - 100
8 mm	100	92 - 100	92 - 100	NR	NR
5,6 mm	92 - 100	NR	NR		
4 mm	NR				
2 mm	28 - 38	23 - 33	20 - 30	20 - 30	19 - 29
0,5 mm	NR	NR	NR	NR	NR
0,063 mm	9,5 - 13,5	8,0 - 12,0	7,0 - 11,0	7,0 - 11,0	6,0 - 10,0

NR: No Requirement: geen eis

Opm.: Als karakteristieke grove zeef is in afwijking van het bepaalde in NEN-EN 13108-5 niet zeef D/2 voorgeschreven.

Tabel 81.2.9	Eigenschappen	van steenmastiekasfalt
--------------	---------------	------------------------

eigenschap	SMA-NL 5	SMA-NL 8A	SMA-NL 8B	SMA-NL 11A	SMA-NL 11B
bindmiddelgehalte	B _{min 7,4}	B _{min 6,8}	B _{min 6,8}	B _{min 6,6}	B _{min 6,6}
minimum vullingsgraad	VFB _{minNR}				
maximum vullingsgraad	VFB _{maxNR}				
afdruipen	D_{NR}	D _{NR}	D _{NR}	D_{NR}	D _{NR}
watergevoeligheid	ITSR ₈₀				

Future

- We started in 2005 with the functional approach parallel to the empirical approach as it was.
- In 2010 we moved fully to the functional testing for all continously graded asphalt mixtures.
- Each 5 years the used classes will be evaluated with industry and roads agencies
- At the moment 12 contractors have all equipment (+) for functional testing!!!!!
- We are now in the process to compare the design off plant with the performance of the mixture in the real pavement (see paper Sandra Erkens at CAPSA 2015).

