

Revision of the South African Pavement Design Method Phase 3

Road Pavements Forum – May 2013 Overview of the SAPDM Pavement Design Research Outcomes and System Integration H Theyse

Highlight

- Change in mechanistic-empirical design approach Integration
 - Pavement design
 - Mix design and structural design
 - Pavement design delivery system
- Research outcomes
- Project made possible by ...
 - SANRAL's commitment and funding
 - The hard work of research teams and individuals

Design approach mind-shift

Mechanistic-empirical design of flexible pavements

- Past approach
 - Pavement structural capacity is determined by stress/strain associated with wheel-loads
 - Focus on stress/strain analysis
 - What is the stiffness of the material?

Future approach

- Pavement structural capacity is determined by imposed stress/strain relative to material strength
- Material characteristics changes daily and seasonally with the environment
- Focus on material stiffness and strength under changing environmental conditions

Fatigue and plastic strain highly dependent on temperature conditions

- Past approach
 - 20° C reference temperature

Future approach

Seasonal and diurnal temperature changes

Temperature

Example – Unbound

Plastic strain highly dependent on layer moisture conditions

Past approach

 Dry, intermediate or wet conditions for duration of structural analysis period

Future approach

Seasonal moisture content changes

Stress and strength

Integrated pavement design delivery process

	Project phase	Responsible party					
		Road authority	Design office	Central laboratory	Service providers	Site laboratory	
	Project initiation	Create and activate project					
	Design investigation		Preliminary investigation and analysis				
				Project level surveys			
			Detail analysis				
	Recursive performance simulation		Historic analysis with auto- calibration				
			Future performance with economic assessment				
	Final design specification		Select final design and develop specification				
	Construction					Q/A testing and approval of work	
			Approval of payment certificate				
		Payment					

Design investigation system

Performance simulation system

Economic assessment system

Design investigation Traffic **Materials Pavement Analysis** Stochastic recursive simulation **Environmental effects**

SAPDM Pavement Design Research Outcomes

Design Investigation

Deflection bowl parameters Back-calculation Change detection

Deflection bowl parameters

Usual suspects Base layer index Middle layer index Lower layer index

Better utilisation of Radius of curvature Far sensor deflection

Stabilised base layers						
	FWD deflection (Horak, 2008)					
Stiffness	Peak deflection	Base Layer				
	(mm)	Index				
Stiff	< 0.400	< 0.200				
Firm	0.400 – 0.600	0.200 - 0.400				
Soft	> 0.600	> 0.400				

Radius of Curvature

 $\begin{array}{l} \mbox{FWD deflection at 1800 mm offset} \\ \mbox{Indicator of deep subgrade conditions} \\ \mbox{I}_{1800} \leq 20 \mbox{ micron} - \mbox{Stiff to semi-rigid} \\ \mbox{I}_{20} < \delta_{1800} \leq 40 \mbox{ micron} - \mbox{Firm subgrade} \\ \mbox{I}_{40} < \delta_{1800} \leq 60 \mbox{ micron} - \mbox{Soft subgrade} \\ \mbox{I}_{60} < \delta_{1800} \leq 80 \mbox{ micron} - \mbox{Very soft subgrade} \end{array}$

Mountainous area with bed-rock found in some test-pits

Homogenous subgrade with old pavement at about 600 mm depth

Moist subgrade

R243 Vereeniging Far Sensor Deflection Cumulative Sum of Differences

Back-calculation

Back-PADS (Lea and Theyse, 2006)

Robust minimisation algorithm

 Solution independent of seed moduli

Surface bowl and depth deflection profiles

Fast

Back-GAMES (Maina, 2012)

Static and dynamic backcalculation Global solution Very fast and automatic

Change detection

Past

Cumulative sum of differences method

- Sensitive to outliers
- Manual change detection by visual inspection

Future (van As, 2013)

Exponentially weighted moving average

Outlier detection

Maximum likelihood method

Change point detection

Fully automatic

SAPDM Pavement Design Research Outcomes

Traffic

ROADS AGENCY I Traffic Research Areas: Completed Reports (1/3)SANRAL/SAPDM/A2/2009/01 Correction of Systematic Error in WIM Data DPG De Wet (with M Slavik) SANRAL/SAPDM/A2/2009/02 **Research Traffic Data Preparation** SC van As & AJ Papenfus SANRAL/SAPDM/A2/2009/03 Traffic Data Verification and Replacement SC van As

ROADS AGENCY: I Traffic Research Areas: Completed Reports (2/3) SANRAL/SAPDM/A2/2009/04 WIM Dynamic Load Correction SC van As SANRAL/SAPDM/A2/2012/01 Heavy Vehicle Classification SC van As SANRAL/SAPDM/A2/2012/02 **Traffic Stratification System** AJ Papenfus & SC van As

¹ Traffic Research Areas: Completed Reports (3/3) SANRAL/SAPDM/A2/2012/03 Loading Classes and Axle Load Distributions SC van As SANRAL/SAPDM/A2/2012/04 Payment Factors for Traffic and WIM Monitoring SC van As SANRAL/SAPDM/A2/2012/05 Vehicle Free-Flow Speed Prediction Model SC van As

ROADS AGENCY

Traffic Growth Estimation SC van As Waiting for Data **Homogeneous Sections Research completed** Report to be completed

Traffic Research Areas: Manuals

- TMH 14 South African Standard Automatic Traffic Data Collection Format
- TMH 3 Specifications for the Provision of Traffic and WIM Monitoring Service
- TMH8 Traffic Monitoring Procedures (In Process)
- TRH16 Traffic Loading (Cancelled)
- Statistical methods (In Process)
 - SC van As & Z Kimmie

ROADS AGENCY Traffic Research Areas: **Technical Reference Manuals** HTM2 Highway Traffic Model Volume 1: Traffic Flow Model (SAPDM-A3-2013-01) Volume 2: Free-Flow Speed Model (SAPDM-A3-2013-02) Volume 3: Capacity Analysis Model (In Process) Vehicle Operating Cost Model (In Process) NetSafe Highway Safety Model (In Process) TMS Traffic Monitoring System (Not Commenced)

Traffic Research Outcomes

Axle load histogram design WIM data validation and postcalibration Dynamic loading Contact stress

Axle load histogram design

Heavy vehicle classes

Short Medium Long Axle configurations Steer Single Tandem Tridem

Traffic Data Verification

Pattern tests Cluster Analysis (van As)

Neural Networks

WIM data validation and postcalibration

WIM data validation filters (Slavik & van As, 2009)

Remove vehicle entry if

- Lane number less than 1 or more than 4
- Vehicle length less than 2.5 m or more than 25 m
- Number of axles less than 2 or more than 15
- Any axle weigh less than 1 t or more than 20 t
- Ist two axles both weigh less than 2 t
- Front axle weigh less than 1 t or more than 10 t
- Axle spacing between 1st and 2nd axle less than 2.1 m
- Any axle spacing less than 1.1 or more than 10 m
- More than 3 axles in an axle group

WIM data validation and post-calibration

- WIM post-calibration (De Wet & Slavik, 2009)
 - TT method Truck selection
 - 6-7 Axle articulated heavy vehicles (tandem rear axles on tractor)
 - Average "calibrated" axle load 6.5 to 8.5 tons per axle
 - TT method Calibration
 - Calibrate for target tractor load of 21.8 ton
 - TT method Conditions
 - Calibration factor within limits (0.7 to 1.3)
 - Front axle load standard deviation within limits
 - Tractor load standard deviation within limits

WIM data validation and postcalibration

- WIM post-calibration (De Wet & Slavik, 2009)
 - 5 % random and 5 % systematic error

Dynamic loading

- Truck-SIM simulations and calibration of empirical dynamic loading model (Steyn, 2011)
 - Vehicle type
 - Static load
 - Speed
 - Road profile

Dynamic loading

Example

Rigid vehicle driving at 80 km/h on road with IRI of 2.7 mm/m

Drive axle at legal load limit

Contact stress

Tyre-Stress software (de Beer & Maina) Initial work (2011)

- Develop and populate tyre-pavement contact stress information system
- Modelling complex 3D tyre-pavement contact stress

Additional work (2012 - 2013)

- Rectangular loading (Maina, 2012)
- Simplify contact patch geometry to reduce analysis time

Contact stress – Initial phase

Measured contact stress Complex, irregular pattern Multiple circular loads Accurate but not practical Reduced circular loads Almost there but not quite yet

11/6 /84

(0/

Contact stress – Final phase

- Limit contact patch geometry
 - n-shape
 - Single circular
 - Single rectangular
 - m-shape
 - Triple rectangular

THE SOUTH AFRICAN NATIONAL ROADS AGENCY:

(Not to scale)

SAPDM Pavement Design Research Outcomes

Materials

Materials Research Areas

Unbound material (Theyse & van Aswegen) Subgrade **Structural layers** Stabilized material (Mgangira & Theyse + CSIR/US support) Hot-mix asphalt (Verhaeghe, Denneman, Anochie-Boateng, O'Connel) Concrete and paving blocks (Strauss & Slavik) Surface seals (Milne, Visser, Jenkins, Steyn, van Zyl, Gerber, Mukandile)

SAPDM Pavement Design Research Outcomes – Unbound material

Subgrade and structural layer models

- Structural layers
 - High shear stress counter with shear strength Stress ratio approach
- Subgrade
 - Low shear stress
 - Critical response parameter elastic parameter

1.1.1.1.1.

Elastic response Semi-infinite subgrade

Stiffness reduction model

ROADS AGENCY Subgrade Elastic Response Models Semi-infinite subgrade Stiffness reduction model Cape Town N7 HVS sections Modulus 0.6 Subgrade ratio deflection 0.5 Modulus (mm) for semi-1.20 infinite support ratio 0.4 1.00 1.20 Subgrade stiffness reduction - 416A5, MDD 4 0.3 0.80 1.00 M,/M, 0.2 1.2 0.60

Subgrade Permanent Deformation Models

SAMDM 1996 vs SAPDM 2013

Structural layer models

Elastic response

Stress-dependent stiffness if needed

Permanent deformation

Stress Ratio approach similar to FoS

BUT in terms of effective stress

- Suction pressure
- Residual compaction stress
- External load stress

No tensile stress in unbound material

SAPDM Pavement Design Research Outcomes – Stabilised material

Elastic response and damage models

Stiffness reduction confirmed Cement and Bitumen Stabilized Material

Elastic response

Anisotropic approach $E_v = M_c$ Vertical stiffness – chord modulus $E_h = M_e$

SAPDM Pavement Design Research Outcomes – Asphalt material

Elastic response and damage models

Asphalt research outcomes

Elastic response

Temperature dependent Implicit visco-elastic model

Load-pulse duration = f (vehicle speed)

Fatigue

Permanent deformation

Biggest gain is in the number of mixes tested

Asphalt mixes tested

SAPDM project
BTB with 40/50 PEN
Coarse continuous with AE2
Medium continuous with AE2
Bitumen rubber mix
Medium continuous with 60/70 PEN
HiMA

Asphalt mixes tested SABITA project 8 new mixes to be tested

- AP1 BTB (KZN)
- 50/70 medium continuous (WC)
- Durban Type-A; Type-D RA; Type-D WMA
- AP1 coarse continuous (Gauteng)
- Bitumen-rubber porous asphalt (Gauteng)
- SMA (KZN)

additional testing on SAPDM mixes

- Hamburg wheel tracking
- Lottman moisture susceptibility
- Dynamic modulus with confinement

Elastic response

Anisotropic approach $E_v = E^*$ \checkmark \checkmark Vertical stiffness – dynamic modulus \checkmark Horizontal stiffness – effective modulus $E_h = M_e$

- Effect of ageing enters through binder properties
- Input level B (basic)
 - Pre-tested mixes (including binder properties); or
 - Predictive mix E^* and default binder properties
- Input level I (intermediate)
 - Tested binder properties
 - Predictive mix E^*
- Input level A (advanced)
 Tested binder properties
 Tested mix E*

Fatigue

Past

- Very limited calibration data set
 - 2 mixes tested in late 1960s
 - Fatigue models at single design temperature
- Repetitions to 50 % of initial stiffness
- S-N type models with a fixed terminal condition

Fatigue Future

Permanent deformation

Past

No model

SAPDM Pavement Design Research Outcomes – Concrete and paving blocks

Damage models

ROADS AGENCY: Concrete and block paving research areas Concrete pavements cncPave used as a departure point Additional work on Erosion of subbase below concrete Load-transfer at joints **Block** pavements Critical design factors **Riding quality deterioration models** Introduction into cncPave

Damage models: Concrete pavements

Subbase erosion

Past

Factor in cncPave based on user experience

Future

- Erosion factor derived from
- Level B (basic) GM, PI and ITS
- Level I (Intermediate) Brush test
- Level A (Advanced) Rotational Shear Tes

Critical design factors: Block pavements

Joint width

 Less than 2 mm

 Joint filling
 High crushing strength sand
 Low permeability grading
 Fully filled

- Thicker, higher strength blocks in "lock-up" pattern
- Stabilized subbase

Damage models: Block pavements

Riding quality deterioration Past

Not available in cncPave

Future

- block-PAVE available in cncPave
- Request for calibration data

SAPDM Pavement Design Research Outcomes

Pavement Analysis

Pavement analysis

Multi-layer, linear-elastic analysis

- Anisotropic material models (Maina, 2012)
- Rectangular loading (Maina, 2012)

Effective stress (Theyse, 2009)

Stress and temperature dependent material models (Theyse, 2009 & 2011) Validation with

- Finite element analysis (du Preez)
- Measured stress and strain R104 (Steyn)

SAPDM Pavement Design Research Outcomes

Stochastic, recursive simulation

Non-linear recursive simulation Strain-hardening Memory-less damage models (Theyse & van As, 2009) Markov property The evolution of future damage depends only on the current level of damage and future loading

Non-linear recursive simulation Strain-hardening

Non-linear recursive simulation Memory-less model

Memory-less model calibrated for Subgrade stiffness reduction Unbound plastic strain Crushed stone bases Subgrade **HMA** Plastic strain Fatigue

SAPDM Pavement Design Research Outcomes

Environmental Effects

Environmental effects Climate zones and pavement moisture conditions Ambient temperature zones and asphalt temperature depth profiles

Ambient temperature and asphalt temperature profiles *Thermal*-PADS models (Viljoen & Denneman)

- Daily minimum and maximum ambient temperature
- AC surface temperature
- AC depth temperature profile
- AC diurnal temperature profile

Daily minimum and maximum ambient temperature

AC surface temperature

SAPDM related research in all areas of pavement design Too many outcomes to list Highlighted most significant outcomes Started with implementation in software system

