

Feedback on Asphalt Recycling & Warm Mix Asphalt initiatives

Trevor Distin RPF 12 November 2008

Challenges to sustainability

- Generation of GHG is main cause of global warming
- Consumption on non renewable resources

Status on Asphalt Recycling

- Resolution passed at Nov 07 RPF that a task team be established to develop best practice guidelines for the use of RAP in HMA
- Task team has met twice on
 - -24 April 2008
 - -22 September 2008

AR Task Team

• Clients

- Dennis Rossmann
- Adreo Brits
- Rob Lindsay
- Eric Lathlief/ Krishna Naidoo
- Engineers
 - Derick Pretorius
 - Tony Lewis
 - Nico vd Walt
 - Benoit Verhaeghe

- Manufacturers & Contractors
 - Bennie Greyling
 - Herman Marais
 - Wynand Nortje
 - Gary Catin

Plan of action

- 1. Use existing TRH 21 (1996) as the basis
- 2. Update with latest international best practice
- 3. Identify appropriate documents
- 4. Agree on content of new TRH 21
- 5. Sabita appointed Tony Lewis in June to draft a revised TRH21
- 6. Identify specialists from task team to act as peer reviewers for each section
- 7. Completed first draft by Nov RPF

Way forward

- Post the first draft on <u>www.sabita.co.za</u>
 November 2008
- International peer review by global asphalt associations
 - January 2009
- Publish best practice document – March 2009
- Workshop best practice document
 - April/May 2009

Progress on Warm Mix Asphalt

- SAT seminar held in Pretoria on 9 July on Warm Mix Asphalt techniques
- Interest group formed to investigate the performance & benefits of WMA to reduce the carbon foot print of HMA
- Meeting held on 5 September with Sabita members & eThekwini Municipality to plan the construction and evaluation of field trials

Why WMA?

- Industry should strive to take actions that continually improve HSE
- Logical step is to lower asphalt mixing & paving temperatures which will result in:
 - Lower GHG emissions
 - Reduction in energy consumption
 - Improved working conditions
 - Bitumen fumes at temperatures > 130 °C & rate doubles for every 10° C increase

How do we reduce asphalt mixing temperatures?

- Reduce the viscosity of the binder during mixing & application
- What are the challenges?
 - Ensure complete coating of aggregate
 - Adequate drying of the aggregate
 - Temperature high enough to prevent condensation in the baghouse

Asphalt mixing classification

	Coldmix	Warm Mix	Hotmix
Mix temp ⁰C	Ambient	100 - 135	140 - 180
Binder types	Emulsion Cutback	Foam Additives	Penetration Modified

WMA techniques

- 1. Chemical additives
 - Evotherm (DAT process by Westvaco)
 - Rediset WMX (Akzo Nobel surfactants)
 - Revix (Mathy Technology)
 - Sasobit (also modifies binder properties)

Temperature

WMA techniques

- 2. Foaming methods
 - Astec foam attachment
 - Shell WAM foam technology
 - Alpha min (Zeolite)
 - Terex

Benefits of WMA

Construction

- Less oxidation of mixes = longer life
- Longer haul distance
- Longer paving season
- Pave in cooler weather
- Improved workability of stiff mixes
- Ideal for hand work and patching
- Extended paving window for thin layers
- Open to traffic sooner
- Improved compaction on longitudinal joints

Benefits of WMA

HSE

- Reduced GHG
 emissions
- Safer working conditions
 - Reduces fumes
 - Reduced odours
- Reduced fuel usage
- Use of higher % RAP

Reduced fuel usage

- Savings of 20 35% in burner fuel
- Reduced fuel consumption = reduced GHG emissions
- Dependant on plant design & aggregate moisture content
 - 10% increase in fuel for 1% aggregate moisture content

Adding RAP to WMA

- Use 10 20% RAP
- Superheat aggregate to 140 °C
 - removes moisture & increases temperature to baghouse
- Less oxidation of binder helps rejuvenate RAP
- Using RAP stiffens WMA & improves rut resistance of mix

Who would you prefer as your neighbour?

50% of asphalt produced in USA will be WMA by 2013 – Mike Acott Astec have orders for 75 Double drum green plants

Way forward

- Keep a watching brief on global developments in **WMA**
- Extend WMA trials to include other techniques

www.warmmixasphalt.com

International Warm-Mix Asphalt Conference * * * * * * * * * *

The first public demonstration of warm-mix asphalt in the U.S. was held at the World of Asphalt Show and Conference in Nashville in 2004. Since then, numerous field trials and demonstrations have been built throughout the U.S. using a variety of methods to reduce asphalt mix production and placement temperatures. Now the world will return to Nastwille for

November 11-13, 2008 **Marriott Nashville Airport** Nashville, Tennessee, USA

sive and compelling conference on warm mix ever presented

The conference will feature the latest information on warm-mix asphalt technologies, including

- * processes
- mix production and placement
- energy consumption
- + mix design
- material properties
- + engineering * environmental performance
- * state of the practice
- + future directions

The Federal Highway Administration and the National Asphalt Pavement Association are sponsoring an International Conference on Warm-Mix Asphalt to be held in Nashville, Tennessee, November 11-13, 2008.

- Speakers: Speakers will include technology providers, researchers, agencies, and contractors who have had first-hand experience. They will be chosen for their ability to present information in a lively, engaging manner.
- Who should attend: Engineers, contractors, agency personnel, and researchers

Where to Stay:

- Marriott Nashville Airport Hotel (615) 889-9300 Hotel Rates: Government employee \$107 Non-government \$149
- Conference registration fee to be determined.

Look for more information at www.warmmixasphalt.com

TRH 21 HOT-MIX RECYCLED ASPHALT UPDATE

"Update TRH 21: 1996 utilizing the latest developments in hot-mix asphalt recycling world-wide, highlighting the environmental and economic benefits of the process." *Proposed change in acronym for "RECLAIMED ASPHALT"*

Change from reclaimed asphalt pavement "RAP" to reclaimed asphalt "RA"

The European CEN Standard EN 13108-8 uses the acronym "RA":

"Reclaimed asphalt (RA) comprises asphalt reclaimed from milling road layers, by crushing slabs ripped up from asphalt pavements, lumps from slabs, and asphalt from reject or surplus production"

Layout:

- Principles of hot-mix asphalt recycling
- · Challenges and solutions to hot-mix recycling
- Factors that influence availability and quality of RA
- Investigation of RA sources
- Reclaiming, preparing and stockpiling RA
- Mix design procedures
- Mixing plant requirements
- Quality control of hot-mix recycled asphalt
- Economic considerations
- Occupational health, safety and the environment
 - Case studies

Challenges and solutions to hot-mix recycling

Main inhibitors to recycling (according to PIARC review):

- client education regarding benefits of recycling
- legislation to promote & increase use of recycling
- economy and supply/demand

Factors that influence availability and quality of RA

- Mix types continuously graded, gap-graded
- Other factors influencing RA quality tar, geosynthetics, bitumen rubber

Investigation of RA sources

- Desk study
- field investigations cores, milling machine

- don't discard RA source due to low pen regard as "black aggregate"
- consider use of tailings and returns at asphalt plants as RA sources

Reclaiming, preparing and stockpiling RA

- Milling consider need for selective milling
- Stockpiling try to reduce moisture 3 phases
- Crushing
 - Fractionating

Grading of the fractionated RA	Typical usage in recycled asphalt mixes
- 28 mm + 14 mm	Asphalt base mixes
- 14 mm + 7.1 mm	Asphalt base, coarse & medium continuously graded mixes
- 7.1 mm	All above, plus fine continuously graded mixes

Emphasize utilisation of the whole RA product

Mix design procedures

Preliminary mix design required when:

- Using high RA (>30%) mixes
- Modified binder in RA
- RA includes surfacing seals with highly modified binders

Job mix design:

- Sample from prepared RA stockpiles
- Consider recommended % RA depending upon mix type

RA CONTENT IN MIX	ADDITIONAL BINDER GRADES	RA AGGREGATE QUALITY
0% to 15%	No change in binder grade	No testing required
15% to 30%	Use one grade softer base bitumen	Check coarse aggregate for strength (ACV, 10% FACT)
30% to 50%	Determine recovered binder properties of the RA. Use blending chart to decide on appropriate binder grade or if rejuvenator agent required	Check coarse aggregate for strength (ACV, 10% FACT), check fine aggregate quality (sand equivalent)

Mixing plant requirements

- Cold feed systems

 Mixing plant types – batch plants, parallel flow and counter flow continuous drum mixers, double drum continuous mixing plants

Economic considerations

Direct savings in terms of:

- lower virgin aggregate consumption
- Iower bitumen consumption
- reduced bitumen transport costs
- eliminating waste disposal costs

The way forward:

- Post as a draft on the SABITA website end November
- Peer review by international organizations February 2009
- Finalise and post on SANRAL website March 2009
- Workshops at various centres April 2009

WMA TRIALS

Scope of the trials

Effect of additions of RA to the WMA mixes

WMA TRIALS

Include high-RA (20% and 30%) trial sections

WARM MIX ASPHALT TRIALS BRACKENHILL ROAD

INANDA ROAD					FISCHEF ROAD
0	400 8	00 11	50 150	00	1850 2200
	LAY	ERTHICKN	IESS 40 m n	n ———	
Hot recycled mix containing 20% RA	Hot recycled mix containing 30% RA	Control mix "D"	Mix "D" plus 1.5% wax	Mix "D" plus 10% RA	Mix "D" plus 10% RA plus 1.5% wax
225 tons	225 tons	200 tons	200 tons	200 tons	200 tons
RA Components: - 8 mm 10% - 16 mm 109	RA Components: - 8 mm 10% - 16 mm 20%			RA Components: - 8 mm 10%	RA Components: - 8 mm 10%
60/70 pen	60/70 pen, modified with 2% EXP 1655 wax	40/50 pen	40/50 pen modified with 1.5% wax	40/50 pen	40/50 pen modified with 1.5% wax

	Sampling & testing at plant:	
	A) Mix temperature at plant exit	Measure in skip at 10 min intervals
	B) Mix temperature in truck	Each truck load
	C) Burner fuel consumption	Flow meter readings at start and end of production run
	D) Bitumen storage temperature	Before each production run
	E) Binder pen, SP, viscosity	Each mix
	F) Bitumen content, grading, voids	3 samples per mix
	G) Marshall Stab & Flow, ITS,	One set of each test per mix
	resilient modulus, MMLS @ 50°C,	·
	1/4 speed, modified Lottman	
	H) Recovered pen, SP	Each mix
	I) Moisture content of aggregates	Daily
	and RAP	-
	J) Moisture content of newly mixed	3 samples per mix, using Dean & Starke
	asphalt	
	K) Thermal imaging	At plant and at paving site – track trucks
	L) Bag house emissions	Each production run
Sam	pling & testing at paver:	
A)	Mix temperature	Each truck
B)	Mix temperature	Behind paver after each truckload
C)	Time for mix to cool to 50°C	Each mix type
D)	Thermal imaging as mix cools	Each mix
E)	Measure ambient and road	Set on each mix type
	temperatures, wind speed	
F)	Operator's exposure to fumes	Each mix
Testing of compaction		
Nuclear gauge		Measure at random positions during compaction and
		once compaction is complete
Core testing		7 randomly distributed cores per mix type

Poor condition of the existing pavement

Patching the severely distressed areas

Reclaimed asphalt from eThekwini road rehabilitation projects is scalped on a 28 mm screen.

The RA is loaded into the feed hopper of the mixing plant

The RA is blended together with 15% crusher dust and mixed together with 2% foamed bitumen and 1% cement in the cold mixing plant

PRODUCTION OF THE ASPHALT MIXES

Recycled asphalt mix containing 30% RA plus 2% EXP 1655 wax based additive

Paving up steep grade using mix containing 30% RA

Effect of BituGlide on temperature of PTR wheels

Section	Average Binder Content (%)	Average Void Content (%)	Average Marshall Stability & Flow	Average ITS (kPa)
Hot recycled mix containing 20% RA	5.1	2.9	16.7/3.1	1202
Hot recycled mix containing 30% RA plus 2% waxed based additive (EXP 1655)	5.2	1.9	14.9/3.0	1286
Control mix "D"	4.7	5.0	13.7/2.9	1230
Mix "D" plus 1.5% Sasobit	4.9	4.4	14.5/3.0	1286
Mix "D" plus 10% RA	5.3	3.5	14.5/3.1	1391
Mix "D" plus 10% RA plus 1.5% Sasobit	5.0	3.3	12.5/2.9	1272

Section	Burner Fuel Usage (I/ton)	Average Mix Temperature at paver (°C)	Roller passes required
Hot recycled mix containing 20% RA		151	4
Hot recycled mix containing 30% RA plus 2% waxed based additive (EXP 1655)		153	5
Control mix "D"	7.3	163	5
Mix "D" plus 1.5% Sasobit	6.3	138	7
Mix "D" plus 10% RA	7.2	151	4
Mix "D" plus 10% RA plus 1.5% Sasobit	6.4	121	5

TRIAL MIXES BRACKENHILL ROAD

EXPERIENCE GAINED TO DATE:

Mixing plant

- Reduced burner fuel consumption
- Challenges in achieving stable reductions in mix exit temperatures
- Paving site
 - Complete coating achieved at lower mix temperatures
 - Stiffer mixes may require additional compaction

AWAITED:

- Moisture contents of warm mixes
- Compaction results
- Full set of mix properties
 - Results of emission and fume monitoring

The way forward:

- WMA trials using other additives
- WMA trials using foamed bitumen
- Increased proportions of RA in WMA