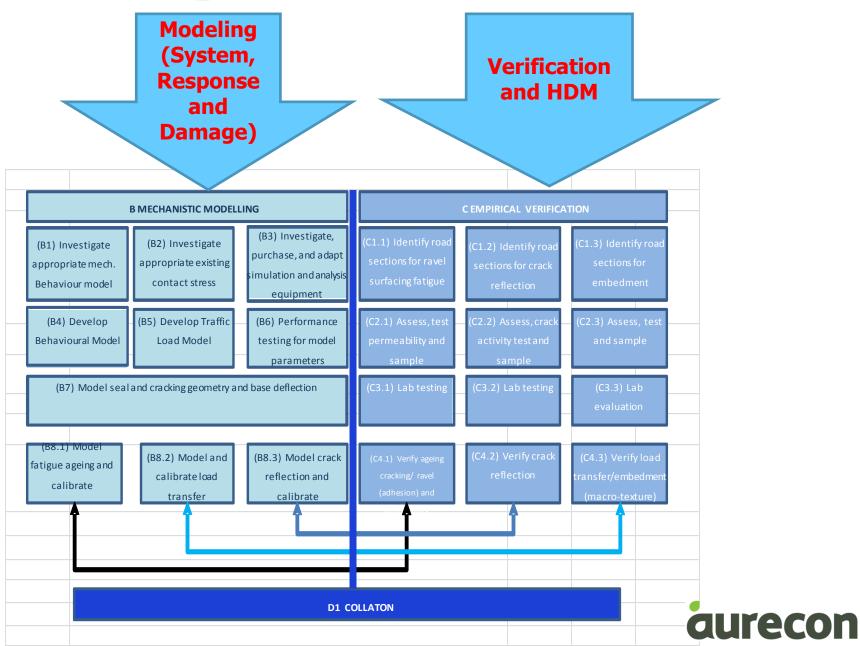
SAPDM Thin Surfacings Progress and Preview

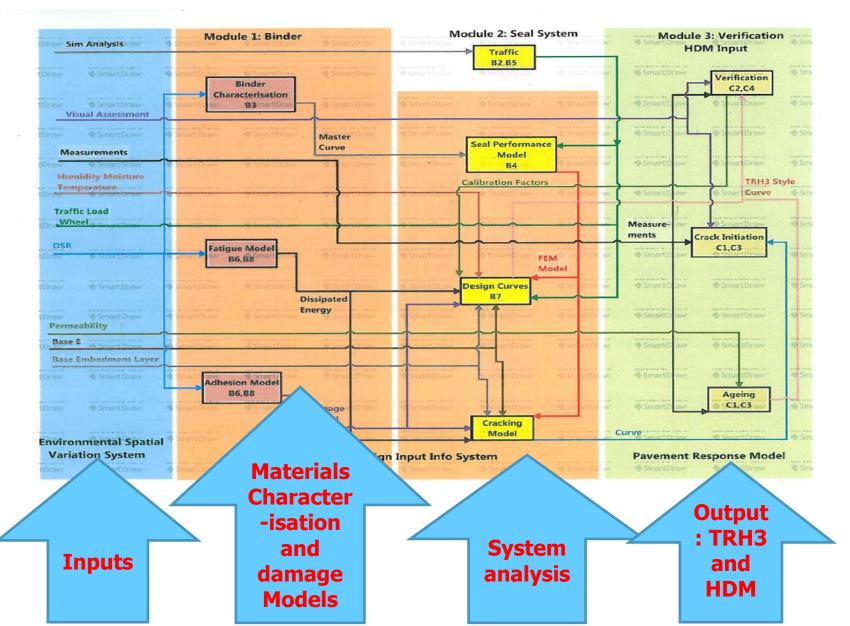
Store Participation and

2010 – 2013 November 2013 CSIR Dr Terence Milne


Whats news?

- HDM addition for pavement performance prediction
- Mechanistic Seal Materials and System Response Modeling for SAPDM (Godzilla)
- Mechanistic Empirical Design Method: Preview subject to change (TRH3)

The Original Plan


COLUMN TRANSFORM

Preview: Design Process in SAPDM

HE SOUTH AFRICAN NATIONAL

STATES AND

Seal Design preview (subject to change)

- Seal design will be based on the current TRH3 platform
- TRH3 Modules will be replaced /improved by SAPDM seal models as applicable and evolve
- SAPDM seal system will be used to improve:

 Effect of Aggregate spacing per seal type - interlock (friction) in reducing embedment (Mat behavior)
 Improve embedment model : less embedment = more load before texture is lost

✓ Effect of existing macro-texture
 ✓ Wave length and amplitude –determine voids requiring additional binder

Seal Design preview (subject to change)

- ELV's determination (per pavement type) based on RESPONSE and DAMAGE
- Minimum binder volumes
 - □Adhesive failure for minimum binder applications
- > Temperature for winter sealing
 - Adhesive failure
- Flushing/loss of texture (punching)
 - □Volumes of voids lost (texture or in the seal)
- Climate
 - Binder selection Applicable DSR parameters

Seal Design preview (subject to change)

Ageing

Applicable DSR parameters

- □Binder selection reflect effect of climate
- □(Ageing : Seal design focusses on the early period when adhesion is critical, and texture depth loss as seal is trafficked)
- On Line system based on the current TRH3 curves with adjustment factors
- Expert system to ensure sanity check
- Can determine binder application sensitive to geometry and microclimate

Contribution to SAPDM

- SAPDM seal response and damage curves to Godzilla
- SAPDM cracking initiation, propagation and reflection and permeability model to Godzilla
- > HDM (HDM calibration factors per binder)

Verification and HDM

Gerrie van Zyl (My Cube)

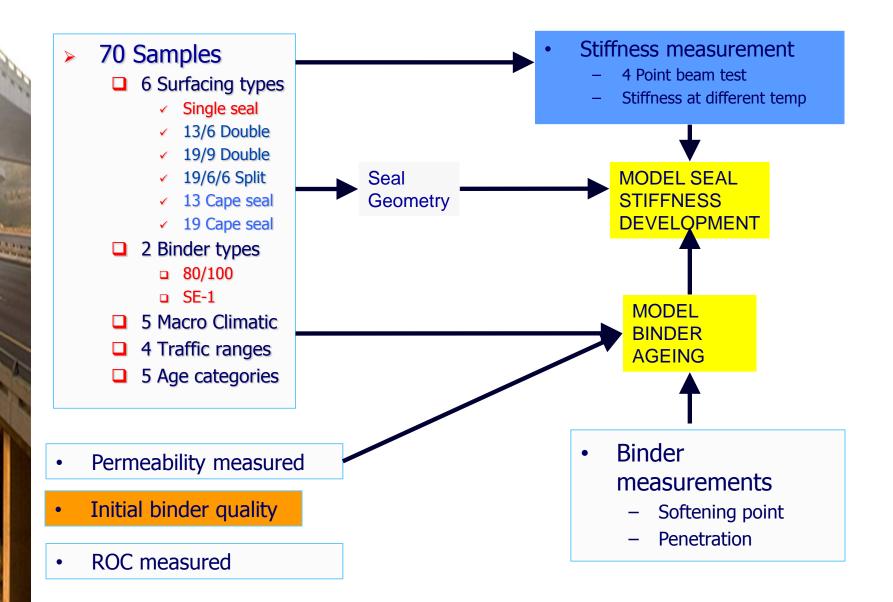
Crack Initiation & Progression (HDM) > Importance

Table 6.1. Kanking of impacts of Road Detenoration Factors						
Deterioration Factor	Typical Values of Factor	Potential Net Impact (%)	Sensitivity Class			
Roughness-age- environment	0.2 – 5.0	10	High			
Cracking initiation	0.5 – 2.0	6	-			
Cracking progression	0.5 – 2.0	6				
Rut depth progression	0.5 – 2.0	3				
Roughness general	0.8 – 1.2	1	.			
progression			Low			
Potholing progression	0.3 - 3.0	2				
Ravelling initiation	0.2 - 3.0	1				
	Deterioration Factor Roughness-age- environment Cracking initiation Cracking progression Ruit depth progression Roughness general progression Potholing progression	Deterioration FactorTypical Values of FactorRoughness-age- environment0.2 - 5.0Cracking initiation0.5 - 2.0Cracking progression0.5 - 2.0Rui depth progression0.5 - 2.0Roughness general progression0.8 - 1.2Potholing progression0.3 - 3.0	Deterioration FactorTypical Values of FactorPotential Net Impact (%)Roughness-age- environment0.2 - 5.010Cracking initiation0.5 - 2.06Cracking progression0.5 - 2.06Roughness general 			

Table 6.1: Ranking of Impacts of Road Deterioration Factors

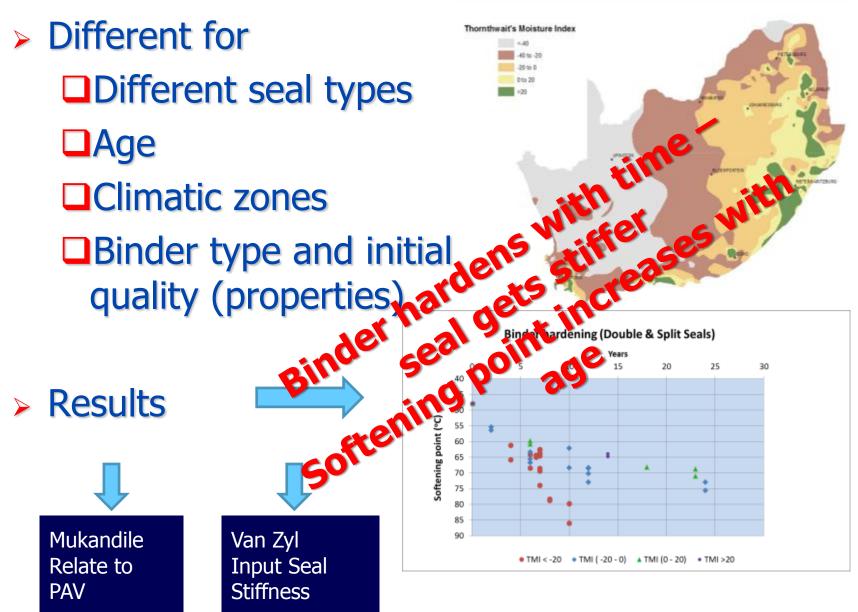
New Surfacings on Granular base

Function of Climate, base type, SNP & E80s



Crack Initiation & Progression (HDM)

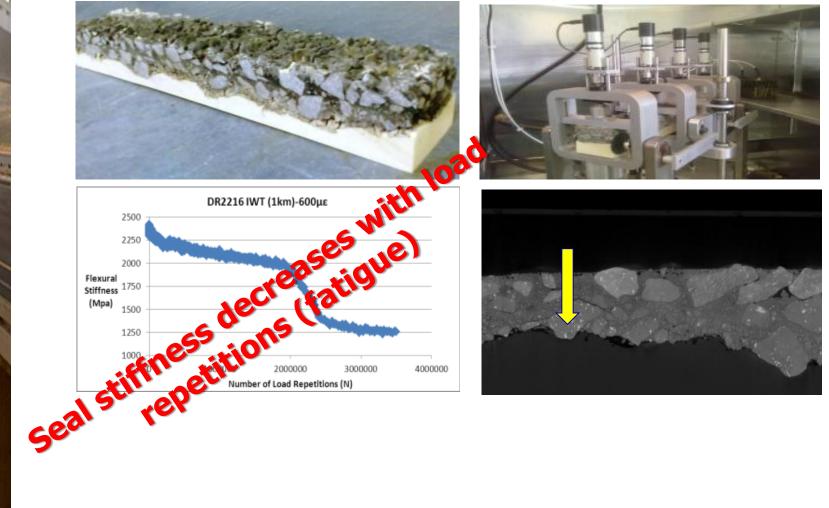
- There IS a difference between seal types
 Seal type (geometry)
 Binder type
 Film thickness
 Coal
- Goal
 - Quantify difference through HDM calibration factors
 - Seal type category
 - Climatic zone


Crack initiation

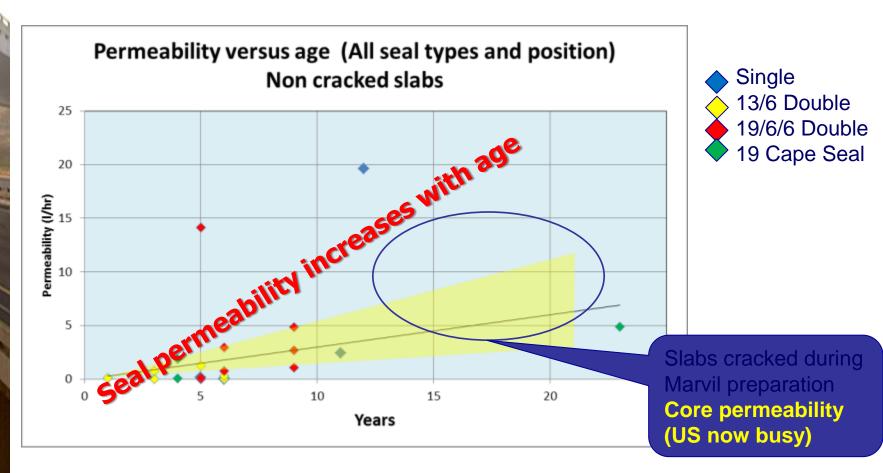
- Seal fatigue cracking function of:
 Seal stiffness development
 Binder Fatigue properties
 Base stiffness (Radius of curvature)
 Traffic loading
- Correlate

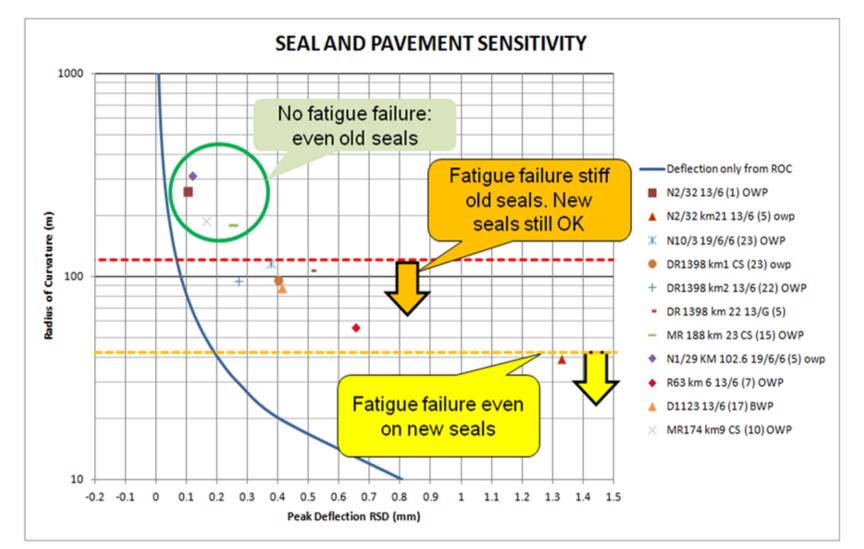
Binder hardening with 4PB seal stiffnessObserved crack initiation with 4PB fatigue

Cumulative damage to fatigue



Quantifying Stiffness & Fatigue Characteristics


Romei Cloete (SU M Student)



Marvil Permeability

Only proportion through to base

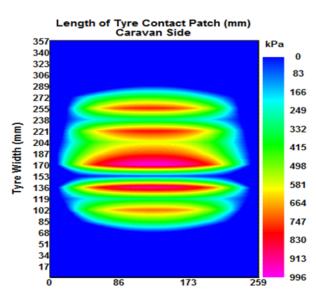
Seal System

Johan Gerber

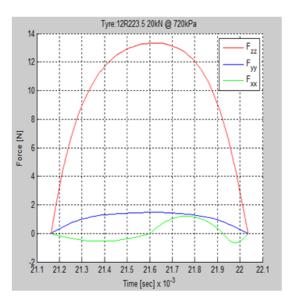
THE SOUTH AFRICAN NATIONAL ROADS AGENCY

Tyre loading & traffic loading

Measured Tyre Loading [B1]

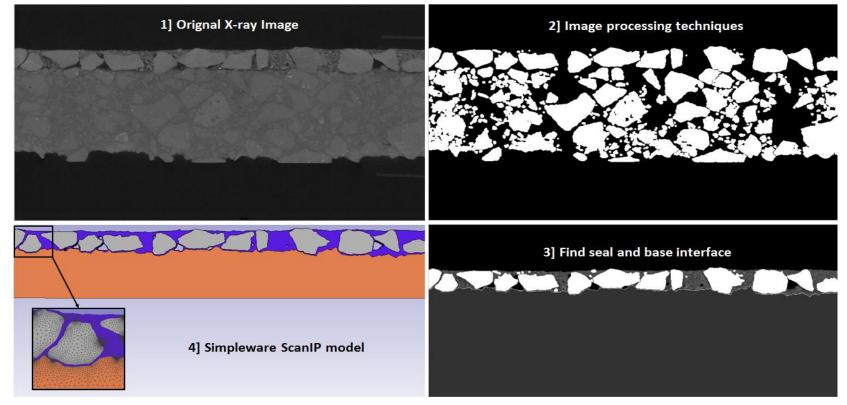

- Tyre type
- Vertical load (kN)
- Tyre inflation pressure (kPa)

Applicable Research

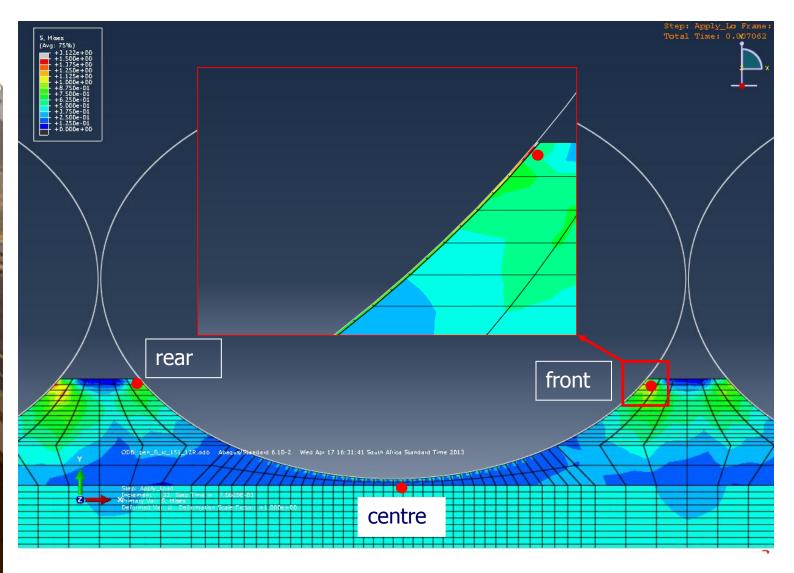

- Position under tyre
- Free rolling wheel
- \rightarrow Driven/Brake wheel
 - Travelling velocity
 - Surface texture
 - Travelling slope

Refined Traffic Loading [B5]

- Converted from 3D to 2D
- Point load signals (N)
- \rightarrow Adjusted according to research



Mechanistic Seal Model


X-ray 2D computer tomography model process

TALKS AND

Performance Model

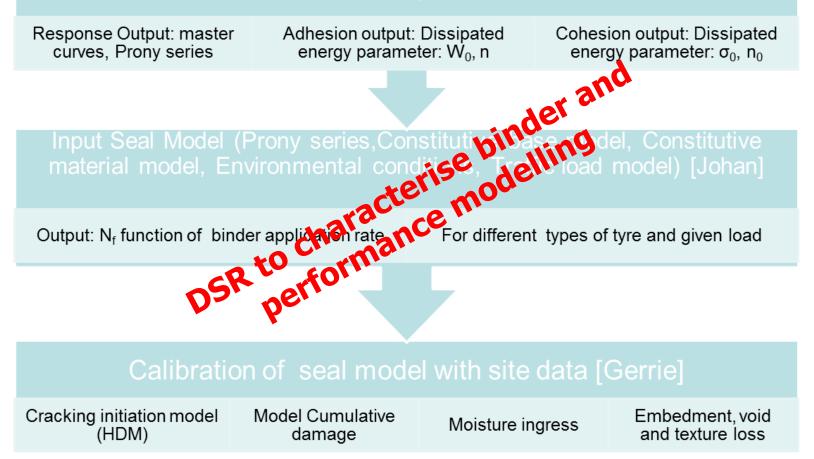
Performance measured in:

 Adhesion failure [ravelling/stripping]
 Cohesion failure [fatigue/cracking]
 Embedment failure
 [punching/bleeding]

Performance model variables overview

Component	\rightarrow		Number of combinations or variables		
Traffic	\rightarrow	Single wheel load	Wheel type, tyre load, tyre inflation pressure etc.	1242	
Materials	\rightarrow	Aggregate	Type, nominal size, ALD, spread rate etc.	81	
		Binder	Type, response at temperature, app. rate etc.	180	
		Fog Spray	Type, response at temperature, app. rate etc.	36	
		Base	Base response char., construction embedment etc.	81	
Model	\rightarrow	Seal type	Single, Double & Cape	6	
iviodel	7	Boundary Conditions	Radius of Curvature, max surface deflection etc.	16	

Total Models: 5.069x10¹²


Improved Damage Models for Bituminous Materials: Bituminous Materials

Estimé Mukandila

Integration Between Different Components Of Seal Project

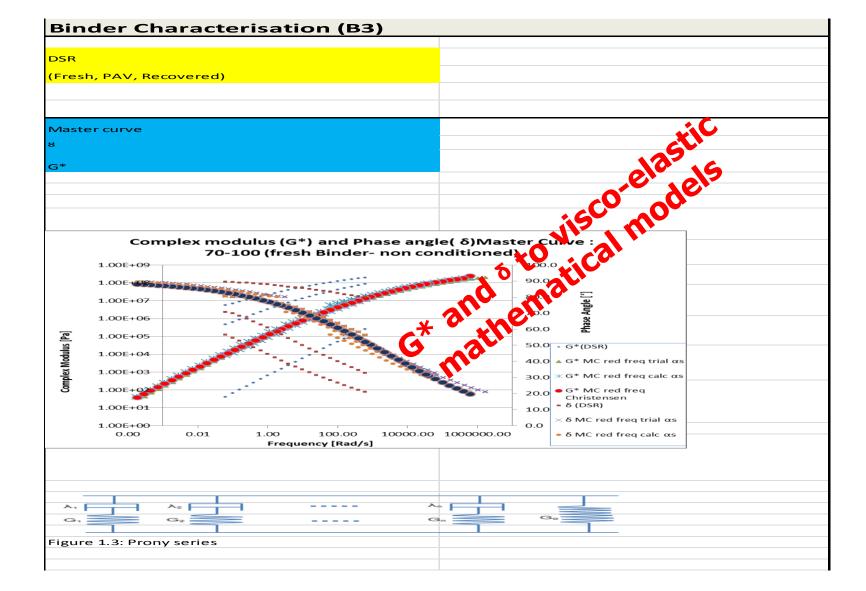
Input Material Model (DSR Data) [Estimé]

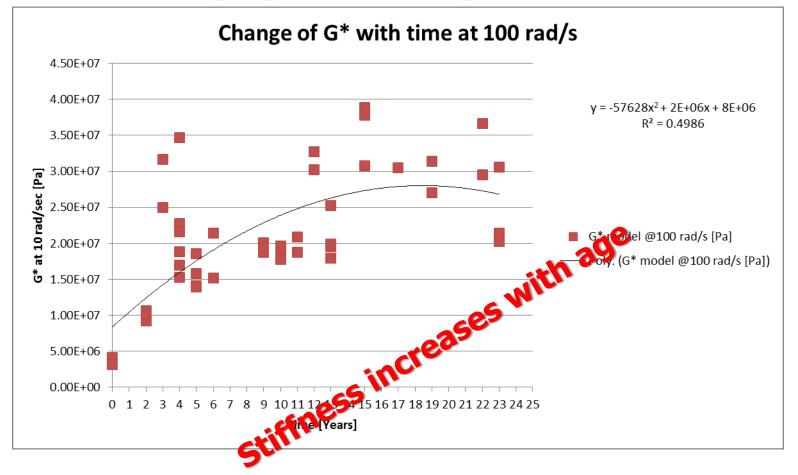
Deliverable of material characterisation and modelling

Inception reference	Item	Deliverable	Comments
B3	Binder Characterisation (Response Model)	1 Master curve (Christensen formula	16 Equations per binder type (for 4 temp. and 4 binder conditions for each.)
		2 Prony series (G ₀ , α_i , τ_{ij}	16 prony series for each binder type
B6, B8	Cohesion (Fatigue Model)	W ₀ , n, N _f =(W ₀ /W _i) ⁿ	Done at 0°C, 5°C, 10°C, 20°C (25°C)
B6, B8	Adhesion Model	σ ₀ , n _{0,} N _f =(σ _{eq} /σ ₀) ⁿ⁰	Done at 0°C, 5°C, 10°C, 20°C (25°C)

Apparatus and Accessories

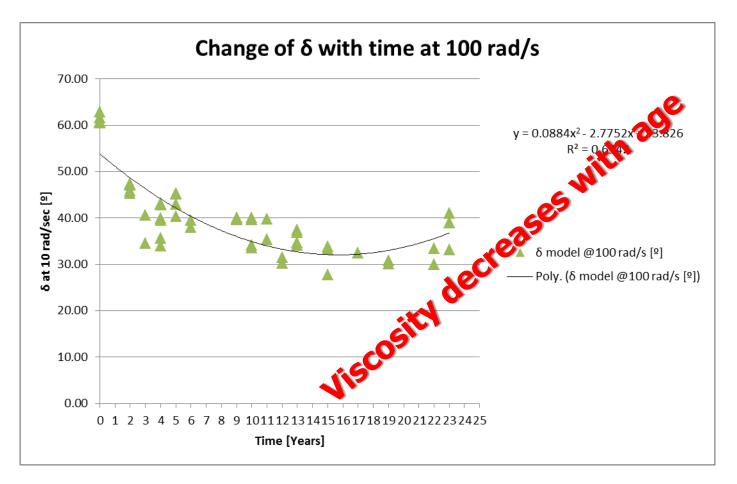
Accessories

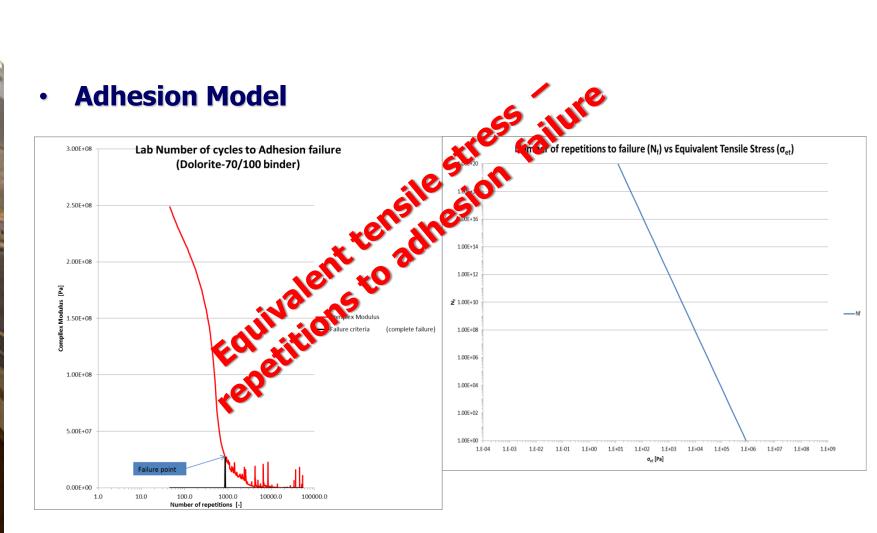


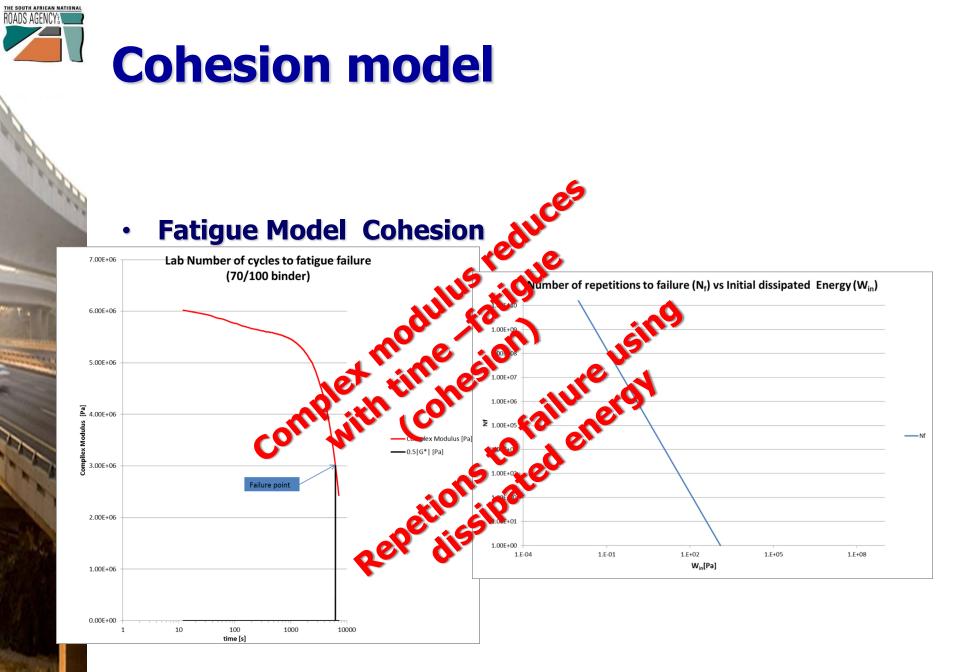

Binder Characterisation

HE SOUTH AFRICAN NATIONAL

Current Progress on Bitumen charaterisation


General aging trend using G*


Bitumen Charaterisation


> General aging trend using δ

Adhesion model

Progress

	TaskTitle	Task Progress	T Milne	G van Zyl	M de Beer	A Visser	J Gerber	E Mukandile	
A1	Inception Phase	100%	x						
B1	Investigate an appropriate mechanistic behavior model	80%					×		
B2-1	Tyre Loading (contact stresses)	100%	х						
B2-2		100%							
B2-3		100%							
B2-4		100%		22					
B3	Obtain/adapt materials behavioral, analysis and simulation equipment and laboratory equipment	60%	< 0			\mathbf{Y}		×	
34 34-1(i)	Develop Behavioral Model (FEM)	75					/	×	
34-1(ii)			V'	1			×		
85	Develop the traffic loading input for the model	201		C			×		
36	Model parameters (materials, yield limits) (lab testing)		NO.					x	
37	Performance Model (run model. Generate curves)						х		
38	Obtain/adapt materials behavioral, analysis and simulation equipment and laboratory equipment Develop Behavioral Model (FEM) Develop the traffic loading input for the model Model parameters (materials, yield limits) (lab testing) Performance Model (run model. Generate curves) Mechanistic behavior model (mathematics simulatio Field Study: Road section for surface Field Verification of sites to in	KO.						x	
1	Field Study: Road section for surface			×					
22	Field Verification of sites to in	90%		x					
3	Laboratory testing of field samples	60%		x					
24	Verify the model	25%		х					
01	Colation, Integration, quarterly and final reports a t	5%				x			
1	Project Management	60%	х	х					

Whats coming next?

Full single seal system

- Binder types and application
- Base types
- Traffic
- Environment
- Ageing
- Aggregate types and application

