

Revision of the Flexible Pavement Design Method

Road Pavements Forum Feedback

Construction of the experimental sections on R104

6 November 2013 H L Theyse

Construction of the experimental sections on R104

Site location and layout

Site layout – all sections

600 mm

S2	Double Seal
FTB	Foam Treated Base
ETB	Emulsion Treated Base
CTB	Cement Treated Base
AC	Continuously-graded Asphalt (A-E2 modified binder)
BTB	Bitumen Treated Base
HIMA	High Modulus Asphalt
JCP	Jointed Concrete Pavement
UTCRCP	Ultra Thin Continuously Reinforced Concrete Pavement
CBP	Concrete Block Paving

150 mm Road Bed Preperation

A 10111 A 1018

Site layout – granular base sections

A. 1. 1. 1. 1. 1. 1.

Site layout – stabilized base sections

 P_m^c

Site layout – hot-mix asphalt sections

Te e e e e

CONTRACTOR OF THE

Site layout – concrete sections

 P_m^c

Site layout – concrete block paver sections

P_m^c

Construction of the experimental sections on R104

Subbase construction

Subbase types

Granular

- -Section 1 G5 subbase
- Sections 3 to 5 reworked old layers
- Cement stabilized (C3)
 - -Section 2 G1 base
 - -Sections 6 to 7b HMA base
 - -Section 8a JCP
 - **Section 9 UTCRCP**
 - -Section 10 CBP

Stabilized subbase – Traffic lane

Stabilized subbase – Instrumented lane

Stabilized subbase – Instrumented lane

Subbase condition summary

Granular subbase

- 500 600 MPa stiffness directly under FWD
- Acceptable quality for granular subbase

Subbase condition summary

Cement stabilized (C3)

- -G1 section
 - CS tipped too early to test subbase
- Sections 6 and 7a 150 mm BTB and HiMA
 1000 to 2500 MPa
- Section 7b 100 mm HiMA base
 - Probably 500 to 1000 MPa
- Section 8a JCP
 - Reworked probably higher than 2000 MPa
- Section 9 and 10
 - Very stiff probably higher than 2500 MPa P_{ac}^{C}

Construction of the experimental sections on R104

G1 Base construction H Theyse & E Kleyn

R104 G-nothing construction

Background

The purpose of slushing is to get from the preferred pre-compaction grading to the ideal post-slushing grading

Stockpile grading

Field grading after excessive rolling

Field grading after slushing

R104 – G1 construction

Record volumes of material removed by slushing

Material test results – R104 G1 density

Chainage	C-L offset (m)	Apparent density (kg/m ³)	Field dry density (kg/m³)	Field moisture content (%)	Relative density (%)
39+510	8.0	2727	2463	2.9	90.3
39+520	5.5	2842	2510	3.1	88.3
39+530	3.0	2707	2450	2.9	90.5
39+540	5.1	2710	2461	3.3	90.8
39+550	8.0	2715	2422	3.1	89.2
39+550	2.8	2729	2431	3.3	89.1

R104 unbound granular bases

FWD base moduli after construction

R104 G1 – Conclusions

- G1 base layer construction successful under the guidance of E Kleyn
- Contrary to popular believe the construction process is
 - Neither complicated
 - Nor time-consuming
- Recommendations made to amend COLTO grading specifications
 - Preferred pre-compaction grading
 - Ideal target grading after slushing

Construction of the experimental sections on R104

Stabilized base construction

BSM mix design - aggregate

- G6 burnt shale
- GM = 2,46

■ PI = 9

MDD = 2202 kg/m³

OCMC = 6,6 %

BSM emulsion mix design

- 0 % lime 1 % cement
- 0 % lime 2 % cement
- 1 % lime 0 % cement
- 1 % lime 1 % cement

Selected

- 1 % lime
- 1 % cement
- 3,7 % emulsion
- 2,2 % residual binder

BSM foam mix design

- 0 % lime 1 % cement
- 0 % lime 2 % cement
- 1 % lime 0 % cement
- 1 % lime 1 % cement

Selected

- 1 % lime
- 1 % cement
- 2,2 % binder

R104 stabilized bases

FWD base moduli after construction

R104 construction of stabilized bases

Why the low stiffness on instrumented lane CTB?

R104 construction of stabilized bases

Why the low stiffness on instrumented lane CTB?

R104 stabilized bases – Conclusions

- Section 3 Cement-treated base
 - Weak strips at longitudinal joint between two DISR cuts
 - Segregation observed
 - Low stiffness identified from FWD on instrumented lane
 - 500 MPa after 28 days
 - Much stiffer material on central portion of DISR cut
 - Confirmed with FWD and acoustic sensing
 - 1400 MPa after 28 days

R104 stabilized bases – Conclusions

- Sections 4 and 5 BSM bases
 - BSM emulsion
 - Traffic lane 1000 MPa stiffness after 28 days
 - Instrumented lane 1700 MPa stiffness after 28 days
 - BSM foam
 - Traffic lane 800 MPa stiffness after 28 days
 - Instrumented lane 1000 MPa stiffness after 28 days

Construction of the experimental sections on R104

Construction of hot-mix asphalt bases

Laboratory results on cores

Reduced Frequency f [Hz]

R104 hot-mix asphalt bases

FWD base moduli after construction

R104 hot-mix asphalt bases – Conclusions

- Section 6 150 mm BTB base
 - Good subbase support
 - 1 000 to 1 500 MPa stiffness
 - High FWD stiffness on both lanes
 - 10 000 to 12 000 MPa with higher stiffness occurring at lower temperatures

R104 hot-mix asphalt bases – Conclusions

Section 7a – 150 mm HiMA base

- Excellent subbase support
 - 2 000 to 2 500 MPa stiffness
- Very high FWD stiffness on both lanes
 - 13 000 to 17 000 MPa with higher stiffness occurring at lower temperatures

Section 7b – 100 mm HiMA base

- Weak subbase support
 - 500 to 600 MPa stiffness
- Reasonable FWD stiffness
 - Traffic lane 10 000 to 12 000 MPa very similar to BTB
 - Instrumented lane 9 000 to 11 000 MPa

Good agreement between FWD and lab

Repeat FWD tests in summer at higher temperature

R104 construction – Closing statement

- Similar to other experimental sections, the variability of stabilized layers is surprisingly high
 - Even under "controlled" experimental conditions
- Proper G1 available for testing
- Unfortunately the support of 100 mm HiMA is different from other HMA sections
- Concrete and block paving sections
 - Blocks ripped-out under traffic
 - Replaced with thicker blocks on instrumented lane