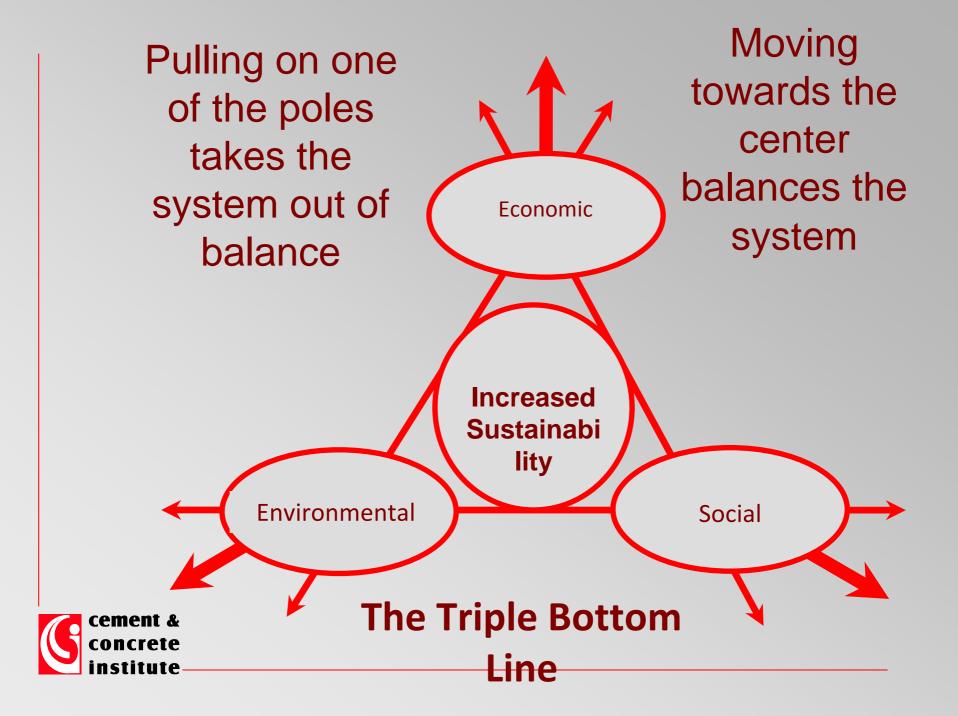
# Common Sense Sustainability for Concrete, including Cement and Aggregates

**Bryan Perrie** 


With acknowledgements to Dr Peter Taylor



### Background

- Concrete is the most commonly used building material on the planet
  - Modern civilization is built on concrete
  - The positive social impacts are immense
- Therefore, it has a relatively large environmental footprint
- Sustainability provides a way to balance the various economic, environmental, and social factors





#### Sustainable Pavements

- It is simply good engineering
  - Using limited resources to achieve design objectives
  - Not about perfection, but about balancing competing, and often contradictory, interests
- Considers <u>life-cycle</u> economic, environmental and societal factors
- It's complicated get over it



# Common Sense Principles of Sustainability – v 1.0

- 1. Get smart
- 2. Design to serve the community
- 3. Choose what you use
- 4. Less is more
- 5. Minimize impact
- 6. Take care of what you have
- 7. Innovate



#### No. 1: Get Smart

- Design for what you need
  - No more and no less
  - Don't sacrifice engineering quality
- Ensure that relevant design criteria are met
  - Holistic approach to design it is not just thickness



# No. 2: Design to Serve the Community

Listen to the communities being affected

Design to address the specific needs of

the community...

- Ride quality

- Delays





### No. 3: Choose What You Use

- Recycle zero-waste
- Local first minimize transportation
- Select the materials to use don't let the materials select themselves
  - Understand what is available
  - Import only what you need





### Recycling and Reuse

- Concrete is 100% recyclable
- Recycled concrete aggregate (RCA) can be used in:
  - new concrete
  - subbases
  - granular fill
- On-site recycling reduces time, energy, pollution, and can make money



### Waste or Resource?

| CEM I                | 3 320 000  |
|----------------------|------------|
| CEM IIA              | 3 176 000  |
| CEM IIB              | 3 439 000  |
| CEM III/CEM IV/CEM V | 3 477 000  |
| GGBS                 | 507 000    |
| Flyash               | 302 000    |
| Other                | 586 000    |
|                      |            |
| Total                | 14 700 000 |



#### No. 4: Less is More

- All things equal, less material means less impact
- Using less portland cement can improve sustainability
  - Blended cements
  - Supplementary cementitious materials (SCMs fly ash, slag, etc.)
  - Aggregate grading
  - Optimized mix design

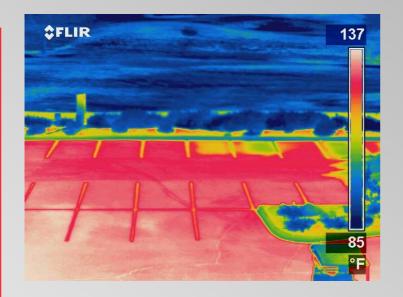


### Why Does Cement Matter?

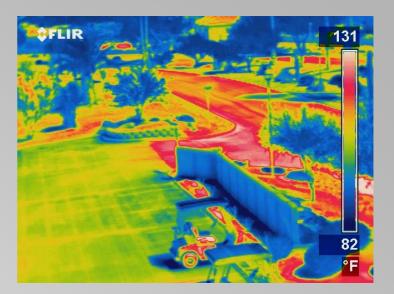
- Worldwide, cement industry is responsible for approximately 5% of man-made CO<sub>2</sub>
- 40% from burning coal and 60% from calcination of limestone



### No. 5: Minimize Impact


- Noise Construction and traffic
- Safety
  - Splash and spray
  - Lighting
- Delays During construction and rehabilitation
- Emissions
  - Green house gases
  - Pollution




### No. 5: Minimize Impact

- Energy efficiency
  - Construction
  - Operation
  - Lighting
- Urban heat island effect



















#### Phases of a Pavement's Life

- Design
- Construction
- Operation
- Rehabilitation
- Recycling, Removal



# Factors Affecting Sustainability Design

Cut and fill

Design life

Construction

method

Drainage

**Thickness** 

Life cycle Cost

Materials selection

Capacity

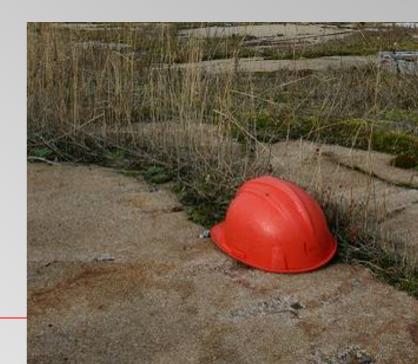


# Factors Affecting Sustainability Construction

 $CO_2$ 

Virgin materials

Dust VOC's


Delay time

Energy

Noise pollution

Life cycle Cost





# Factors Affecting Sustainability Operation

Maintenance

Capacity

Noise pollution

Water

runoff

Reflectivity

Heat island

Safety

Friction to vehicles

Longevity



# Factors Affecting Sustainability Repair/Rehabilitation/Removal

Removal = waste disposal

Repair/ Rebuild = similar issues to construction

Recycling



# No. 6: Take Care of What you Have

- Use the equity already in the existing pavement
- Well timed maintenance and rehabilitation is essential
- Design to maintain
  - For high volume concrete roadways, accommodate future diamond grinding to extend pavement life



#### No. 7: Innovate

- Identify problems/opportunities, generate solutions, implement, and reiterate
- Learn from mistakes
- Good specifications
- Evaluate emerging technologies and adopt those with demonstrated promise
- Educate and challenge yourself and your workforce



### Quantification

- Rating systems
  - Green Roads, GreenLITES
  - LEED
- Life cycle inventory (LCI)/life cycle assessment (LCA)
  - The future is now (ISO 14000)
  - Need to establish regional data and usable software tools



- Reducing usage of raw materials
  - Use of blended cements can reduce clinker factor by 40%
  - Use of extenders such as ggbs, flyash, slica fume, ground limestone
  - Synthetic gypsum from fertilizer and sulphuric acid industries



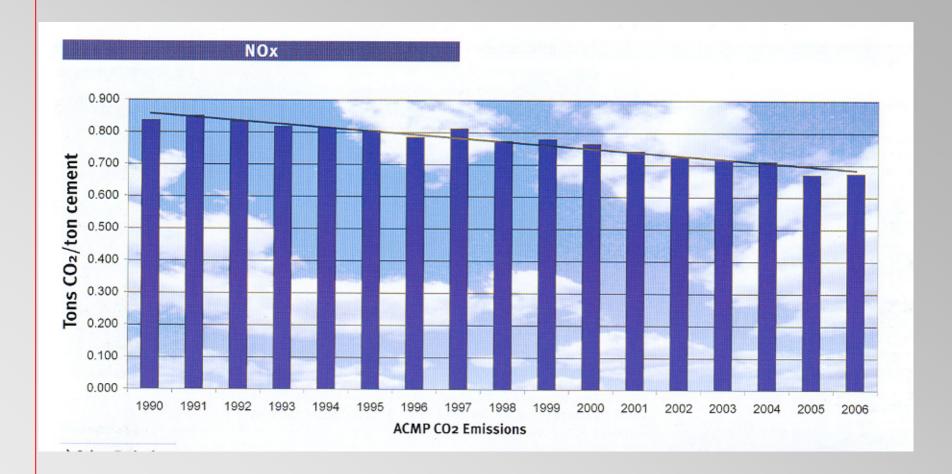
- Reducing energy consumption
  - Reduce use of non-renewable fossil fuels (> 1 million tpa)
  - Introduction of modern technology and equipment



#### Dudfield Kiln #3 Modernisation Thermal energy consumed by the kiln for energy ton of cement produced 3200 -3100 ---3000 -3J/t cement -15% 2900 -2800 -2700 -2600 -2500 -2400 2003 2004



- Reducing energy consumption
  - Reduce use of non-renewable fossil fuels (> 1 million tpa)
  - Introduction of modern technology and equipment
  - Target reduction in energy used for mining by 15% by 2015 (>50% by end 2007)
  - Use of alternative fuels including Hazardous waste




- Reducing energy consumption (cont.)
  - Use of waste tyres in kilns
    - Coal 96 kg CO2 per GJ energy consumed
    - Tyres 85 kg CO2 per GJ energy consumed
    - Steel provides source of iron
    - No ash



- Reducing emissions
  - Particulate emissions
    - Use of bag house filters equivalent to world best practice
  - Greenhouse gas emissions







- Reducing emissions
  - Particulate emissions
    - Use of bag house filters equivalent to world best practice
  - Greenhouse gas emissions
  - Other emissions
    - Reduced by good technology, precalciners, pre-heaters, etc.



- Rehabilitation of mines and quarries
- CSI programmes



# What is the Aggregate Industry (ASPASA) doing...

In addition to Minerals Act and Health and Safety, committed to

- The National Environmental Management Act (NEMA);
- Environment Conservation Act (ECA);
- National Water Act (NWA)
- Air Quality Management Act (AQMA);
- Atmospheric Pollution Prevention Act (APPA);
- National Veld and Forest Fire Act (NVFFA); and
- The National Forest Act (NFA).



### What is the Aggregate Industry (ASPASA) doing...

- Support of the "Triple Bottom Line" management approach
- "About Face" Environmental audits and "Fish Eagle Grading System" based on ISO 14001



### What is the Concrete Industry doing...

- Conducting a survey
- Quantify embodied energy/CO<sub>2</sub> emissions
- For all ingredients in concrete
  - Cement
  - Extenders
  - Aggregates
  - Admixtures
  - Reinforcement
- From cradle to grave



- Includes all energy sources:
  - Electricity
  - Coal
  - Diesel
  - Blasting
  - Transport
- Conduct research to fill the gaps in knowledge (Fellowship for PhD at UCT)



### Thank you



