

Implementation of French asphalt base course technology in eThekwini **GB5®**

RPF Pretoria 19 November 2014

Much Asphalt's Coedmore asphalt mixing plant

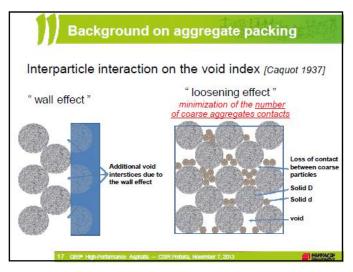
Together we can

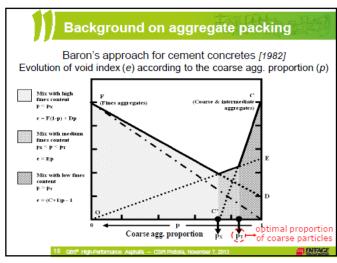
Implementation of GB5

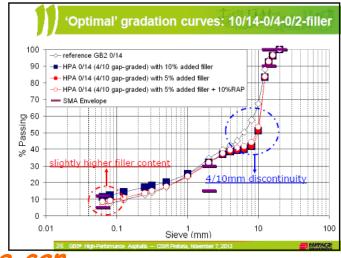
- Background
- Trials
- Summary
- Next Step

Background

- Sabita identified EME (*Enrobé à Module Élevé*) as possible viable option for South Africa 2006
- EME –s French technology developed for highly trafficked roads, airport pavements and container terminals
- Fact finding tour to France & UK May '08 (Reunion '09)
 - Colas, Total, Shell & TRL
- HiMA / EME technology Introduced in SA (Sabita Manual 33)
- CAPSA'11 GB5 technology presented by F Olard
- Much Asphalt obtained License for SA (KZN)
- Mix designs performed at Eiffage Travaux publics laboratory in Lyon


Background 2


- Technology presented at Sabita HiMA workshop 7
 November 2013 and eThekwini 8 November 2013
- eThekwini Identified a project where technology can be implemented
- Working Group established to do pavement designs and plan Trials – Similar to implementation of WMA technologies



What is GB5?

- •Carefully designed aggregate grading Gap Graded
- •35/50 with SBS allows for lower Binder Content than EME
- •20% RA

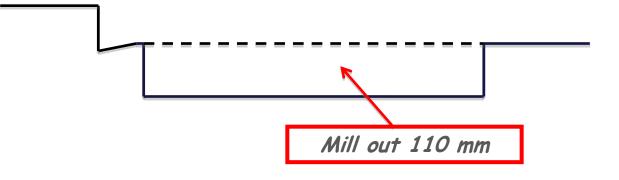
Trials

- Plant Trials done on Brighton Road on 4 & 7 April 2014
- Paving trial on Project Solomon Mahlangu Drive on 29 & 30 May 2014
- Testing and evaluation of asphalt (CSIR, SRT etc)
- Full production 3 June 2 September 2014 (Approx 9500t)
- GB5 Open Day on 10 July 2014
- Paved a reference section with COLTO Coarse A-P1
- Project completed on August 2014 (Approx 9500t)

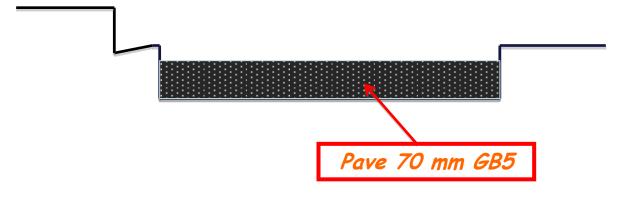
Together we can ...

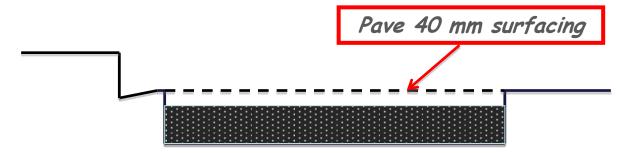
GB TRIAL MEETING NOTES

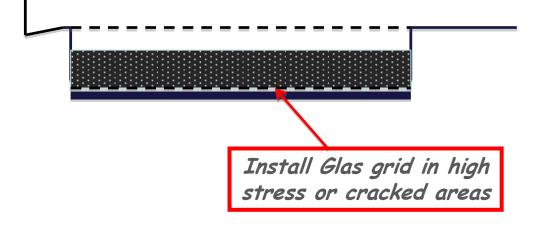
- ☐ Site preparation careful programming
- ☐ Traffic accommodation coping with extremely heavy traffic flows
- ☐ Raw materials managing consistency of aggregates, especially crusher dust
- ☐ Manufacture binder & mix temperature control
- ☐ Transportation of the mix
- ☐ Paving monitoring programme


Solomon Mahlangu Drive - existing pavement

Investigation included test pits and deflection measurements







Potential to pave base and surfacing together as one layer

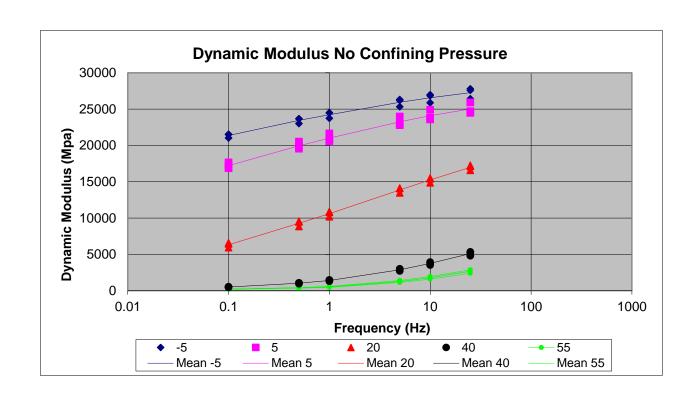
Base & surfacing paved together as one monolithic layer

Togethe

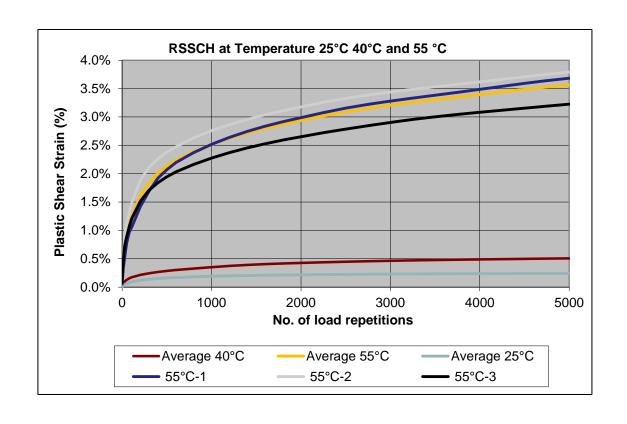
T² EME Test Results

Asphalt / Asfalt

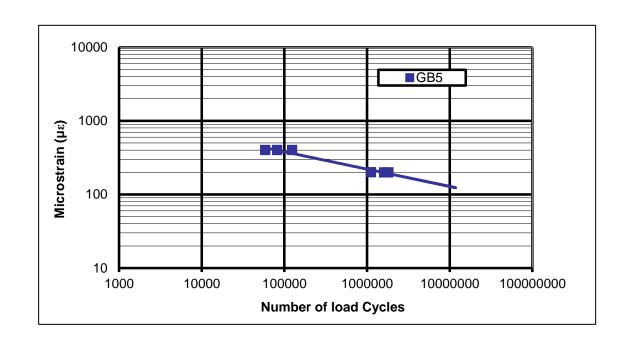
·				Performance Requirements		
Property	Test	Method	TT	GB5	HiMA Base Course	
			EME		Class 1	Class 2
Workability	Gyratory Compactor, Air voids	ASTM				
	after 45 gyrations	D6926	5.6%	5.6%	<u><</u> 10%	<u><</u> 6%
Moisture	Modified Lottman	ASTM				
Sensitivity	_	D4867	0.84	0.92	> 0.8	> 0.8
Permanent	RSST-CH, 55°C, 5 000reps	AASHTO			<u><</u> 1,1%	<u><</u> 1,1%
Deformation		320	2.1%	3.0%	strain	strain
Dynamic	Dynamic modulus test at 10Hz	AASHTO	18.2	18.8		
Modulus	15°C	TP 62	Gpa	Gpa	> 14 GPa	> 14 GPa
Fatigue	Beam fatigue test at 10 Hz	AASHTO			> 10 ⁶ reps	> 10 ⁶ reps
	10°C, to 50% stiffness reduction	TP 321	272 μ€	250 μ€		@ 390μ€

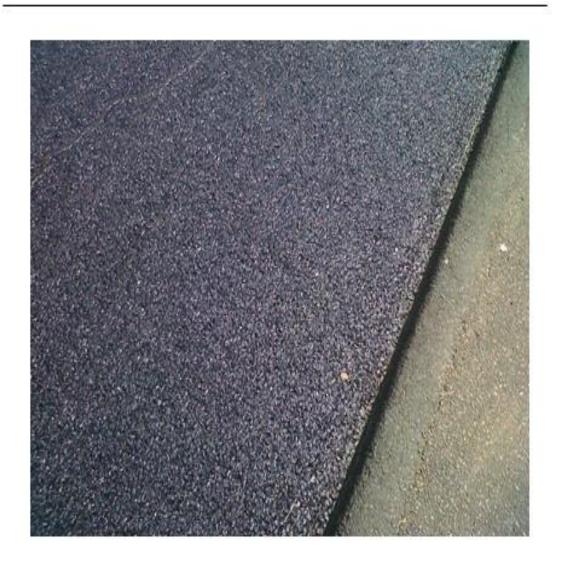

Typical test results

Test parameters	Typical Results	Standard deviation
19 13.2 9.5 6.7 4.75 2.36 1.18 0.600 0.300 0.150 0.075	100 99 66 49 42 30 22 17 14 11 8.1	0.87 1.62 1.37 1.01 0.86 0.75 0.49 0.33 0.49 0.23
Binder content % Film thickness (microns)	5.0	0.09
Voids % Gyratory void content (45 revs)	3.9 7.9	
Indirect tensile strength (kPa)	1340	
Core Density	97	



Dynamic modulus (stiffness)


Permanent deformation: Repeated Simple Shear Test at constant height (RSST -CH)



Beam fatigue



Together we can ...

Together we can ...

SUMMARY

- •9 494 tons of GB5 has been successfully manufactured and paved on Solomon Mahlangu Drive
 - •Much Asphalt's Coedmore plant is fully capable of manufacturing the mix within the required tight limits
- •Aqua is succeeding in the onerous task of accommodating the traffic as well as paving, compacting, and monitoring the GB5
 - eThekwini's rehabilitation team has been actively assisting throughout the trial

SUMMARY

•Utilises reclaimed asphalt

Low permeability

•Texture – promising use in a monolithic layer, as base-cumsurfacing

•Straightforward compaction lends itself to good riding quality

•Uses locally available binder

•High stiffness with good fatigue and rut resistance properties enhances its use on our more highly trafficked

Next Step

•Agrément Certification

•Offered as alternative to EME

Thank you for your attention

