N1/1 UTCRCP PERFORMANCE (RPF November 2011)

G VAN ZYL

Background

- UTCRCP First Large Scale Experiment (4.3km)
- Construction : Aug 2009 Feb 2010
- Attention to detail (Design, & Construction)
- First observed failures (2 at Intermediate Joints)
- Two "Pop-outs" (Buckling) after a year
- Monitoring
- Other distress/ small failures
- Temporary repairs

Design

- Sand grading selection
- Trial mixes (Hornfels aggregate)
 - □ Sands
 - □W/C
- Aggregate (Granite)
 Flakiness <10%
 ALD>4mm
 Testing
- Trials & Process

QA

- Dry component mixing
- Dry bagging
- Temp monitoring
- Steel fixing
- Mixing
- Slump
- Cube preparation
- Compaction, finishing, tining & curing
- Compressive strength testing

First observed distress

Construction sequence

Failure & Repair

After a year (next summer)

Main Defect: Buckling

• 21/12/2010

Buckling

• 7/1/2011

Information available

Buckling

Ambient temperature & Max Humidity

Date & Time

Repair

- Cut
- Mod AC
- 50mm Exp joint
- Fill Viaseal

Monitoring

- Continuous (Temperature, Humidity, Wind)
- 24 hour drive through (Tuncor)
- Horisontal movement study
- Detailed Hor & Vert Movement at "Cut"
- UCT Expansion tests
- Detailed visual assessment
- Profile Measurement

Temperature/ Expansion

km 59.	051					
	Surface	Surface	Surface	Relative	Relative	Relative
Time:	Temperature:	Temperature:	Temperature:	Movement:	Movement:	Movement:
	Concrete North	Concrete South	WC	North (mm)	South (mm)	Overall (mm)
08:00	22.1	21.9	27.3	20	25	45
09:00	25.8	24.9	29.3	19	23	42
10:00	35.3	33.6	42	17	21	38
11:00	39.6	36.1	45.8	13	15	28
12:00	45.9	44.8	50.4	7	10	17
13:00	48.5	48.5	55.2	3	2	5
14:00	54.6	55.8	62.6	0	0	0
15:00	53.3	51.3	60	0	0	0
16:00	52.3	50.1	55.9	0	1	1
17:00	44.8	44.4	49.8	1	2	3
18:00	42.4	42.1	47.5	5	7	12
19:00	34.7	34.4	37.5	8	9	17
20:00	29.9	29.6	33.1	11	12	23
22:00	24.4	23.3	27.7	15	18	33
00:00	22.3	21.6	26.8	16	22	38
02:00	18.5	17.6	23.6	18	23	41
04:00	17.8	1/.5	22.7	20	26	46
06:00	15.8	15.6	20.6	20	26	46
08:00	23.3	22.5	30	19	24	43
			Distance from			
			CIOSEST INT	240	12.	
			beam	249m	13m	

Expansion (at SV59051 cut)

Survey of "Grid pattern" N1/1 (not to scale)

Creeping on curve

Visual Assessment

- 9 June 2011
- Different distress types
- **Degree 0 5**
- Record per 1m x 1m (4 m lane)
- Joints separately

UTCRCP DISTRESS

Crack Types

Transverse cracking
 Transverse Mesh cracking
 Block Mesh cracking
 Longitudinal cracking
 Crocodile cracking

- Pumping of fines
- Rust
- Transverse Joint Spalling
- Longitudinal Joint
- Edge breaks

Transverse Cracking

• Random pattern (not mesh related)

Transverse Mesh Cracking

Block Mesh cracking

Longitudinal cracking

Not mesh related

Crocodile cracking

• Irregular block pattern (not mesh related)

Pumping of Fines

Transverse Joint Spalling

Longitudinal joint

Edge breaks

Small Failures

• Principle

<1/3 of width – Patch Mod AC
>1/3 of width – Full-width cut and patch Mod AC

Transverse Joint

Theoretical Analyses to Determine Risk of Buckling

Develop cncBuckle

- Buckling develops because of horizontal compression in the UTCRC
- Risk of buckling = Compression due to expansion (high temp. and humidity) > tensile stress due to shrinkage (high water content, fines, drying out)
- Interaction with support, reinforcement, variable cross section etc. complicates analysis: Finite Element Analysis

CICBUCKLE1, VO.8, ©2011 P STRAUSS & M SLAVIK (19f)

WELCOME CONTROL WHAT IF

С	Constant	Value		
1	t, years	1		
2	Ls, m	200		
3	Grad , %	4.5		
4	hedge, mm	0	Risk of SF<	
5	alpha	9.0e-6	1.2 %	

Identify your case here

Æ

Implications

- FEA indicated that normally shrinkage stress would be high enough to absorb any expansion
- Relaxation of tensile stress must have occurred
- Variation in thickness most critical
- Weakness such as construction joints may act as triggers
- Safety in joining with adjacent lanes (thickened edges), proper compaction, uniform slab thickness and support.

Less critical issues

- Position of the reinforcement in the slab
- Longitudinal slope of the pavement
- Aggregate content and strength of the concrete
- Bond between UTCRC and support
- Distance between construction joints

Thank you for your attention

