South African Asphalt Mix Design Manual

- Progress Update

Prepared for presentation at RPF, 9 May 2012

Johan O'Connell

Objectives

The objectives of the manual development are:

- Bring asphalt design in SA back in line with international state-of-the-art,
- Complete the migration to performance related design,

2-28

© CSIR 2011

www.csir.co.za

Outline

- Background and progress
- Aims
- State of the art study and key findings
- Outlay of the manual
- Binder Selection Progress to date
- Laboratory study Proposed mixes and performance tests

Background & Progress

Drafting of the manual funded by the Southern African Bitumen Association (SABITA),

- Co-funding from CSIR for supporting research,
- Project consists of four phases:
- I. Establishment of project management structure,
- II. State of the art study,
- III. Experimental work and Manual development, and
- IV. Dissemination

Aims

- Update the design methods in line with international and local advances in asphalt technology and increasing demands placed on asphalt pavements,
- Include new mix types (e.g. HiMA, WMA), and
- Consolidation and inclusion of previous manual pertaining to asphalt mixes (eg 13 – LAMBS, 17 – porous asphalt, 19 Bitumen rubber)
- Mix design method should have link to structural design methods of revised SAPDM.

State of the art study

- Literature study:
 - Current practice in South Africa,
 - Local developments,
 - International developments.
- Interviews with stakeholders:
 - Producers (and other mix designers),
 - Consultants,
 - Clients,
 - Academics
- Asphalt manual workshop Midrand Conference Centre, 23 February 2012

Key Findings

- International trend towards performance related design methods (EU, USA, AUS),
- Performance related design would allow increased reliability and simplification of the mix design and binder selection process,
- Direct link between performance tests and pavement design (SAPDM),
- Typical performance parameters:
 - Workability,
 - Durability,
 - Permanent deformation resistance,
 - Fatigue performance,
 - Stiffness.

Manual Outlay – 7 Chapters

Introduction

History of asphalt mix design in SA, Scope of the manual, Design philosophy

• Mix Type Selection

Properties of asphalt mixes in SA, Structural and functional requirements

• Binder Selection

Introduction of PG grade binder selection procedure, in addition to pen grade and modified binders

Manual Outlay – 7 Chapters....cont.

Aggregate Selection

Performance specs for aggregate selection (esp durability requirements), aggregate packing analysis methods

• Mix Design

- Based on a comprehensive laboratory study, building on the dataset created as part of the SAPDM project.
- Criteria set for workability, durability, stiffness, permanent deformation and fatigue performance parameters

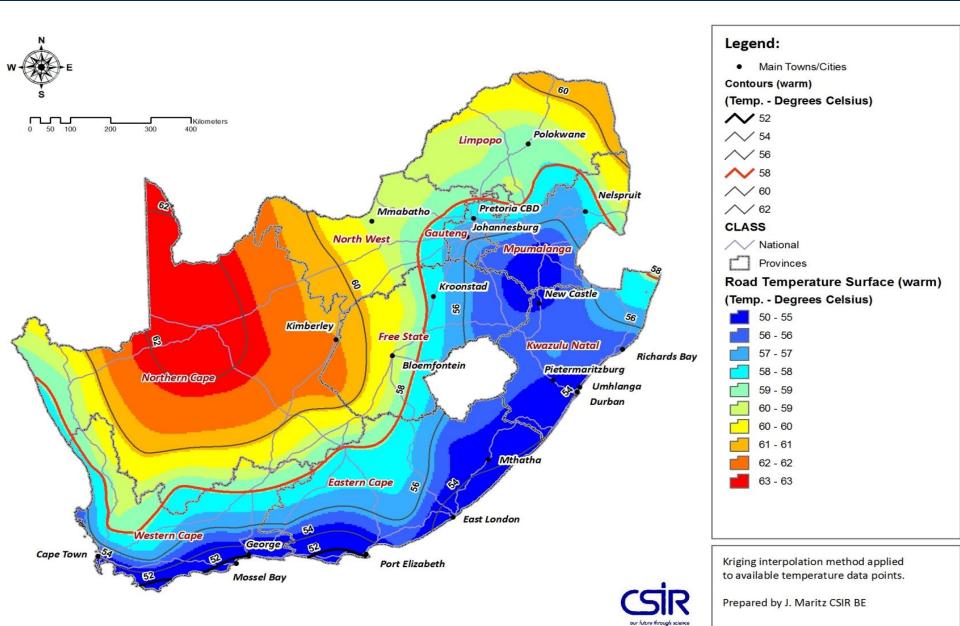
www.csir.co.za

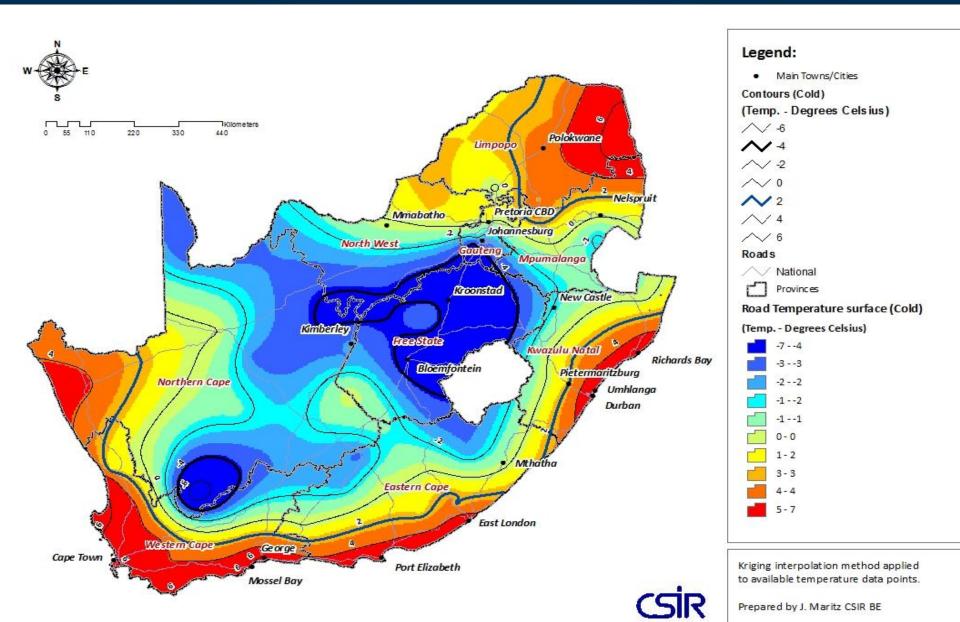
Manual Outlay – 7 Chapters....cont.

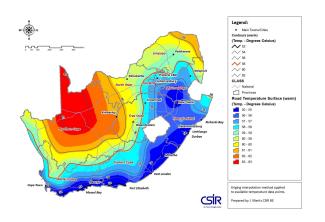
Link to Structural Design

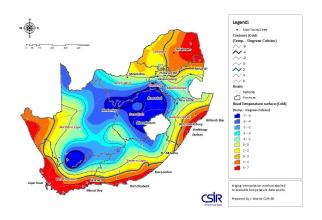
Temperature models, traffic categories, master curves. Damage prediction. Long life pavements, Airport pavements

 Manufacture and Construction
Manufacture, Quality Control, Paving Trials, Construction, Tolerances, Trouble Shooting


Chapter 3: Binder Selection


- Introduction of proposed performance grade binder specification, based mostly on updated US SUPERPAVE
- Select binder for project specific traffic and climate conditions,
- Dynamic Shear Rheometer (DSR) the main piece of equipment in binder testing,
- DSR results required to predict stiffness of binder as part of SAPDM,
- Modified and unmodified binders to be assessed using the same specification,
- Project to validate use of PG for SA binders almost complete – only duplicate testing remaining


Binder Selection – Temperature Zones



Binder Selection – Temperature Zones

Binder Selection – PG Temperatures

•	Superim	posing	Maximum	&	Minimum	Temp

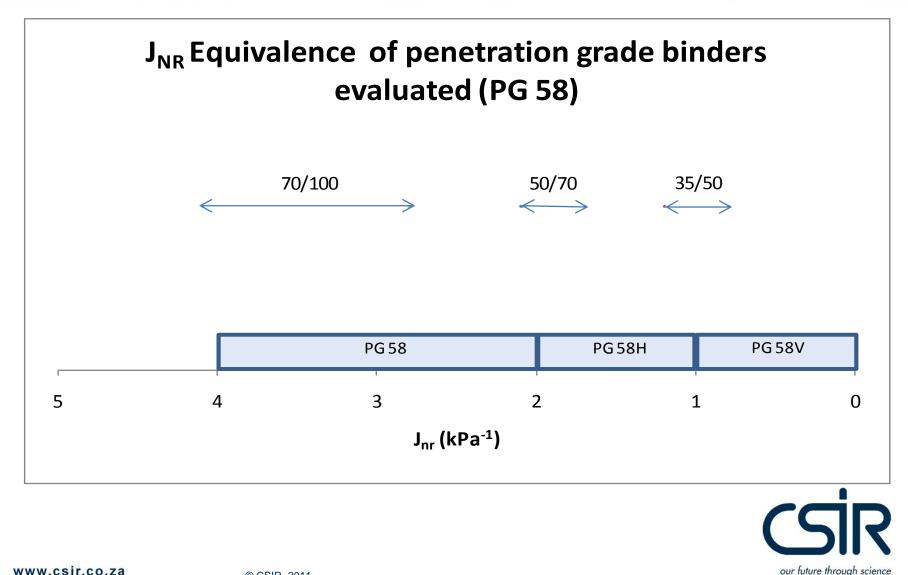
PG Zone	Intermediate Temperature
PG 58+2	34
PG 64+2	37
PG 64-4	34
PG 64-10	31
PG 58-10	28
PG 58-4	31

- No low temperature cracking is likely to occur in South Africa
- Extreme range for low temp testing for Superpave PG is -4°C to -10°. In SA only Sutherland area falls below – 5°C.
- By foregoing Creep stiffness or direct Tension tests, large cost savings are realised.

Binder Selection – PG Specification

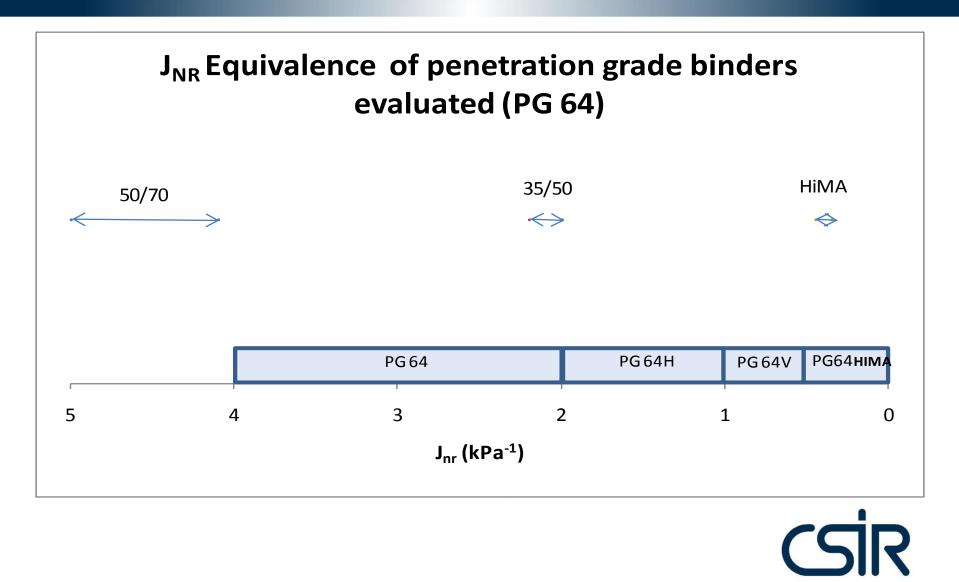
	Proposed Specification				
Binder Class	58	58H	58V	58Hp	58Vp
	Origin	hal Binder			
Maximum pavement design temperature (°C)			≥ 58		
DSR G* /sinō			≥ 1.0 @ 58°C		
Viscosity Pa.s @ 135°C			≤ 3.0		
Flash Point (°C)			≥ 230		
Storage Stability @ 160°C - Difference in Failure Temperature	N/A		≤	≤ 5.0	
	RTFC)T Binder			
Mass Change (m/m%)			0.3 max		
J_{nr} (at σ = 3.2 kPa)	≤ 4.0 kPa ⁻¹ @ 58 °C	≤ 2.0 kPa ⁻¹ @ 58 °C	≤ 1.0 kPa ⁻¹ @ 58 °C	≤ 2.0 kPa ⁻¹ @ 58 °C	≤ 1.0 kPa ⁻¹ @ 58 °C
Percent Recovery at σ = 3.2 kPa		N/A		≥ 25% @ 58 °C	≥ 30% @ 58 °C
A, VTS viscosity parameters			Report Only		
Rolling Stones Test (% cover)			≥ 80		
	PAV Bind	ler - @ 100°C			
DSR ∣G* sinō	Max 5 000 kPa @ 28 °C Max 6 000		kPa @ 28 °C		

our future through science

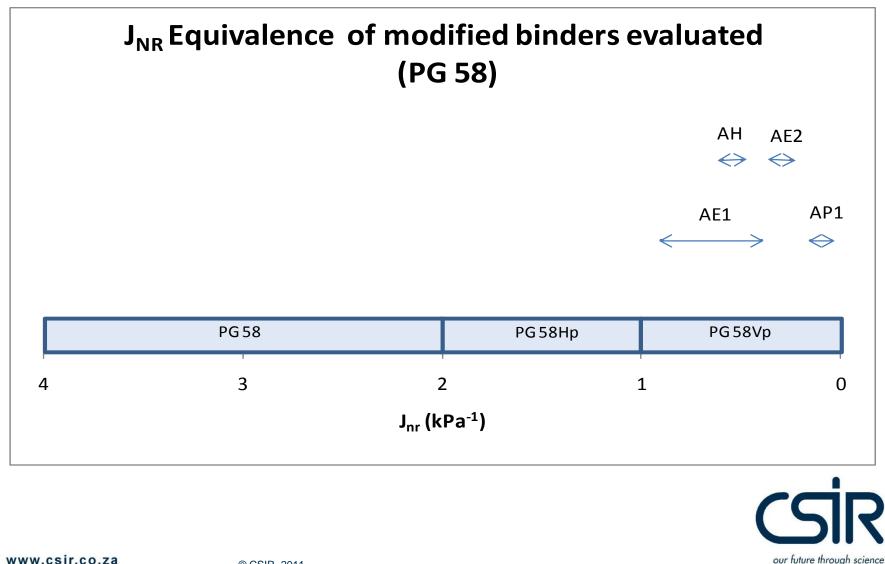

R

Binder Selection – PG Specification

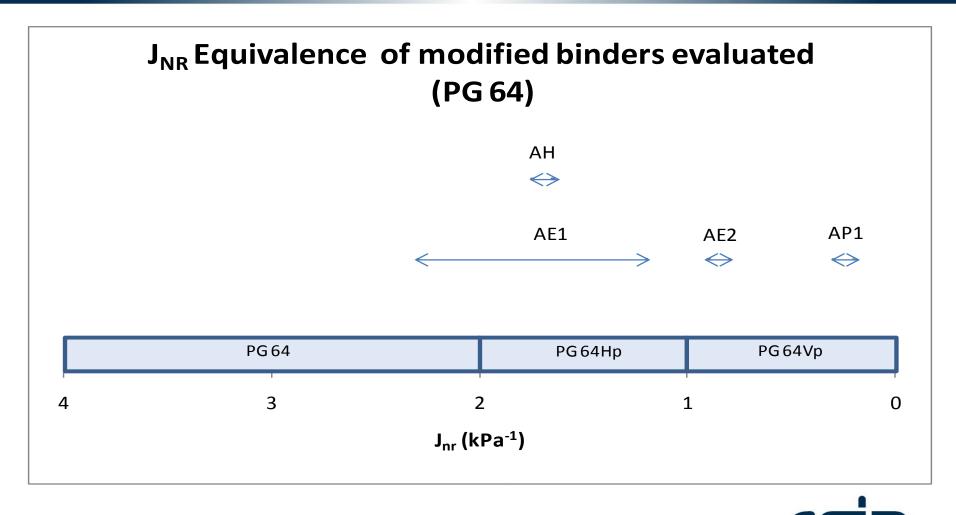
Proposed Specification Binder Class 64H 64HIMA 64V 64Vp 64 64Hp **Original Binder** Maximum pavement design ≥ 64 temperature (°C) ≥ 10 @ DSR |G*|/sinδ ≥ 1.0 @ 64°C 64°C Viscosity Pa.s @ 135°C ≤ 3.0 Flash Point (°C) ≥ 230 Storage Stability @ 160°C -N/A ≤ 5.0 **Difference in Failure Temperature RTFOT Binder** Mass Change (m/m%) [0.3] max ≤ 4.0 ≤ 2.0 ≤ 1.0 ≤ 2.0 ≤ 1.0 ≤ 0.5 kPa⁻¹ @ kPa⁻¹ @ kPa⁻¹ @ kPa⁻¹ @ kPa⁻¹ @ kPa⁻¹ @ J_{nr} (at σ = 3.2 kPa) 64 °C 64 °C 64 °C 64 °C 64 °C 64 °C ≥ 25% @ ≥ 30% @ Percent Recovery at σ = 3.2 kPa N/A N/A 64 °C 64 °C A, VTS viscosity parameters Report Only Rolling Stones Test (% cover) ≥ 80 PAV Binder - @ 100°C Max 5 0 0 0 DSR |G*|sinδ Max 5 000 kPa @ 28 °C Max 6 000 kPa @ 28 °C kPa @ 34 °C


Binder Selection – Evaluation of SA Binders

Binder Selection – Evaluation of SA Binders

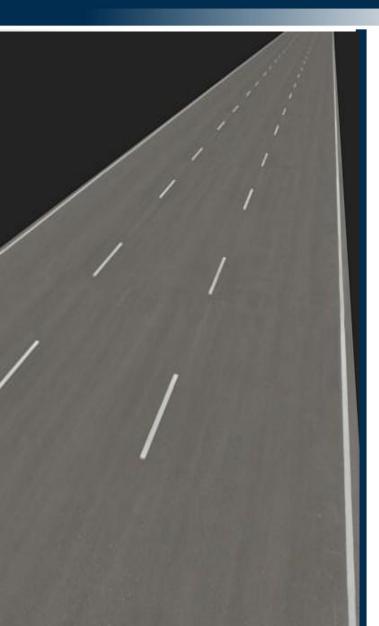

18-28

our future through science



www.csir.co.za

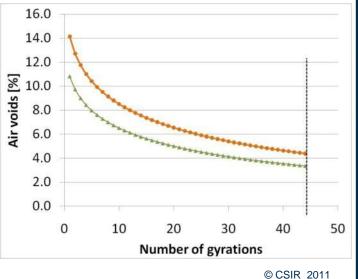
Binder Selection – Evaluation of SA Binders



Vision for the asphalt manual: binder testing 20-28

Mix Design – Laboratory Study

In addition to the 5 SAPDM (GFIP) mixes:


- 1. AP1 BTB National Asphalt (Durban)
- 2. Medium continuous + 60/70 Much (CT)
- 3. Durban std mix Type A National Asphalt
- 4. Durban std mix Type D + recycled asphalt – National Asphalt (Durban)
- 5. Durban std mix Type D + warm mix additive – National Asphalt (Durban)
- 6. Coarse continuous AP1 Much (Benoni)
- 7. Porous Asphalt with bitumen rubber
- 8. SMA National Asphalt (Durban

Performance testing: Workability

22-28

- SUPERPAVE gyratory compactor ASTM D2013-98 (note: minimum specimen height of 175 mm required)
- Compact to a set number of gyrations to meet compaction effort under rollers in the field
- Mix design requirement: maximum air void content at specified number of gyrations
- Asphalt producers will be involved in this study to relate workability in the gyratory compactor to compactability in the field

© CSIR 2011

Performance testing: Stiffness

23-28

- Will be derived from the dynamic modulus test – AASHTO TP 62
- Mix design requirement: minimum modulus at fixed combination of load frequency and temperature
- Equipment can be used for master curve development → input into SAPDM
- AMPT equipment for dynamic modulus test can also be used for deformation test

www.csir.co.za

Performance testing: Permanent deformation

- Suitable test still to be selected 3 tests to be done
- RSST-CH as benchmark, but equipment too expensive for use in mix design
- AMPT test (simple performance test) → input for SAPDM models, ITS & E* can also be determined
- (Hamburg) wheel tracking test → No link with SAPDM models, also gives indication of durability
- Mix design requirement: level of permanent deformation after set number of load repetitions at design temperature

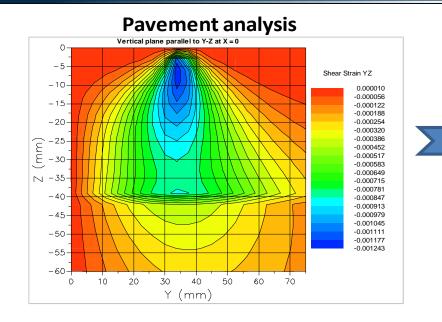
Performance testing: Durability

25-28

- Modified Lottman: TSR ASTM D4867
- Possible alternative: stripping inflection point HWTT

www.csir.co.za

Performance testing: Fatigue



- Flexural four point bending test AASHTO T 321
- Can also be used to determine dynamic modulus → mix design parameter
- Fatigue results \rightarrow input SAPDM models
- Mix design requirement: minimum strain level to 10^6 load repetitions at set frequency and temperature

Vision for implementation

27-28

Mix selec	tion			
Property	Mix 1	Mix 2	Mix 3	
E* [GPa]	14	6	3	
Fatigue [$\mu\epsilon$ to 10^6]	220	370	280	<u> </u>
Perm. def. [ϵ_p]	0.8 %	1.5 %	4.2 %	V
Workability [voids]	5.0	4.5	5.2	
Durability [TSR]	90	85	75	
			4	

Structural requirements

Property	value
E* [GPa]	>5
Fatigue [$\mu\epsilon$ to 10^6]	> 300
Perm. def. [ϵ_p]	< 2%

Tender specification

	Property	value
	E* [GPa]	> 5
-	Fatigue [$\mu\epsilon$ to 10^6]	> 300
	Perm. def. [ϵ_p]	< 2%
	Workability [voids]	< 6%
	Durability [TSR]	>80%

Thank you!

