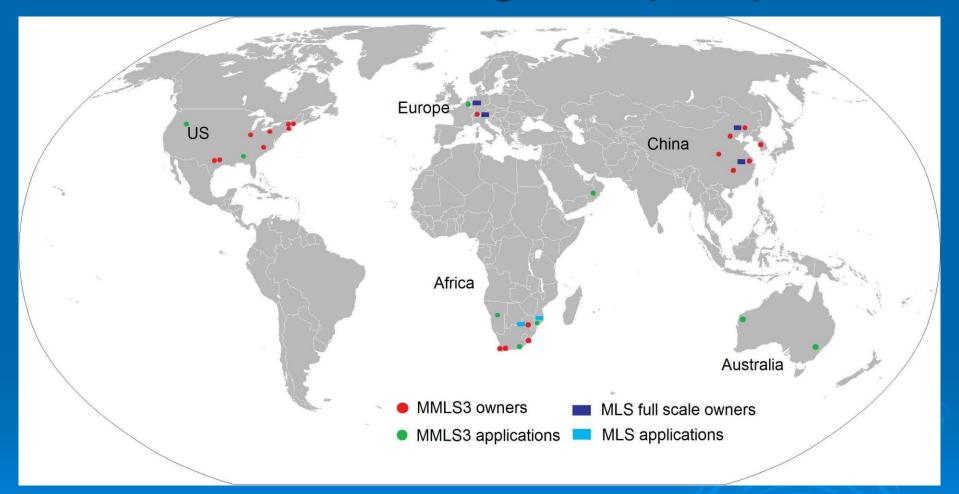
Review of MMLS3 Applications as Specification Parameter for Highways and Airports

> Discussion Submission to RPF, May 9, 2012 Fred Hugo Chair and Coordinator RPF MMLS3 Protocol Task Team

Historic Applications by MMLS3 Users since 1997 fall into two categories


- Empirical testing with historically developed protocols and performance criteria
- Theoretical modelling and analyses with performance prediction and validation through trial testing and/or field observation

Variables that have to be considered by **MMLS3 Users** Lateral Wander Wheel Load Speed Contact stress Conditioning ≻Heat ≻Ambient ≻Cooled >Wet/Dry ≻Ageing

Application of the Protocol by MMLS3 Users

MMLS3 Applications by users								
		Lab		Field	Field/Lab			
Output/Variabl es/ Data collection & protocols	Special structures	Scaled/ Full-scale Pavement Layers	Cores	Briquette Pills	Surface of Layer structure	Layered pavement		
Rutting and Moisture damage								
Fatigue								
Stresses/Strain s								
Stiffness								
Other								

MMLS3 studies in global perspective

The reported applications cover a wide range of conditions in the countries where the research was done namely:

- 1. Switzerland,
- 2. United States
- 3. South Africa
- 4. Australia

A Bibliography will be posted on the MLS website: www.mlstestsystems.com

M7MLS3 peer reviewed publications were sorted into application categories

-Material	-Comparative					
Characteristics	Response &					
& Rutting	Performance					
Performance -12	between APT					
	Systems - 11					
-Contact	-Dimensional					
Stresses -2	Analysis - 2					
-Moisture	-Reinforcing - 5					
Damage - 4						
-Fatigue - 2	-Airports - 4					
Total = 42						

Westrack Field validation

NCAT Test Track MMLS3 Field validation

Conclusions from Westrack and NCAT MMLS3 vs truck trafficking

- MMLS3 rutting performance comparable to truck trafficking in terms of ranking and extent
- Vertical stress, wander, temperature and frequency, have to be taken into account for assessment
- Note that the asphalt tested was 125 150 mm and the defined limits for rutting was related to 10m E80s over 2 years.

South African applications have been adapted to local conditions relative to traffic and thickness Evaluation of Performance of Asphalt Paving Mixes as reported in the categorized applications.

Pavement Reinforcement by PSU

MLS66 test in China supplemented with MMLS3

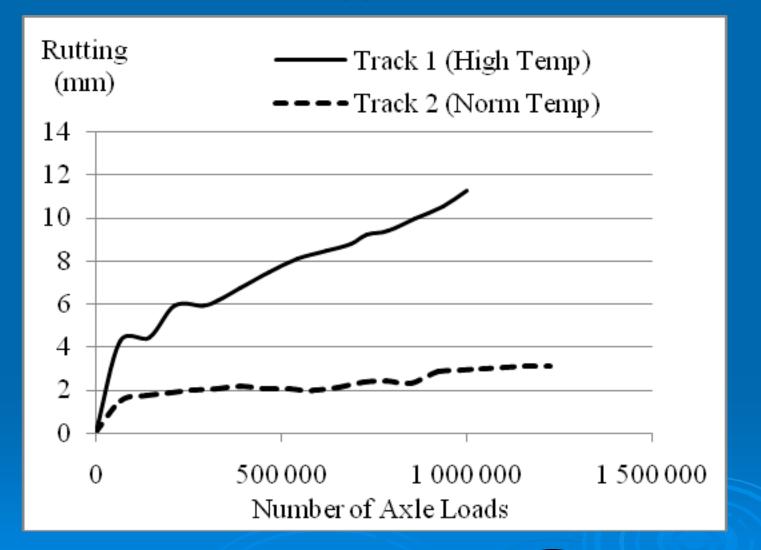



Figure CS5/2 Composite of averaged rutting performance under heated & ambient temperature

MLS10 test in Switzerland supplemented with MMLS3

Tongji MLS66 in Laboratory in Shanghai set-up for Lateral Movement

10000

Scaling and Effect of Influence Factors

- 1. Contact Stresses
- 2. Strain and effect of Layer thickness and Structural composition
- 3. Temperature and Ageing influence on Stiffness
- 4. Particle size and Material characteristics
- 5. Boundary conditions
- 6. Rut definition in terms of downward deformation and upward heave
- 7. Deformation in lower layers
- 8. Effect of Lateral wander
- 9. Pavement gradient

 This explains why the MMLS3 Testing system is not an *empirical testing device* with a singular purpose. It is a trafficking system capable of being used to evaluate a range of pavement engineering issues and problems in a cost-effective manner.

It differs from other tracking devices

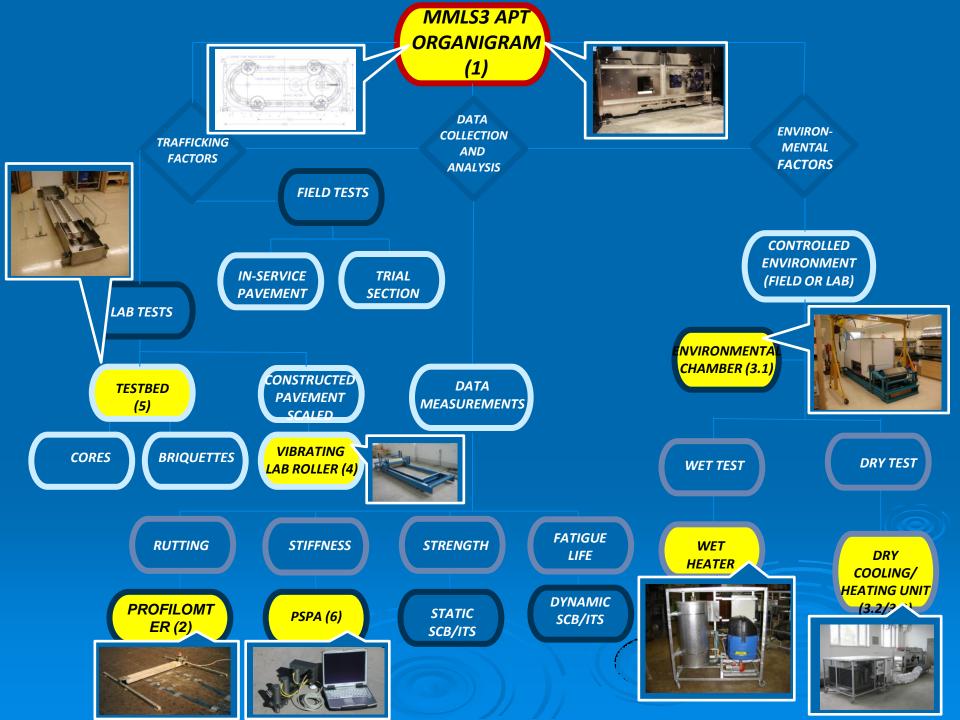
Salient Features of MMLS3 Testing that need to be borne in mind when selecting specimen preparation, test conditioning and trafficking mode

Test Guidelines

Specimen Preparation and Trafficking										
	Compaction Preparation									
Lab Field										
1	2	3	4	5	б	7	8			
Hammer	Gyrator	Roller	Roller	er Roller Roller						
Cylindrical mould Core Slab Slab							ab			
Trafficking										
	Channeli	zed		Wa	nder	Chnl	Wander			

Test Guidelines (cont)

Specimen Preparation and Trafficking (cont)


Test Conditioning				Temp C		Temp C
Moisture			Dry		Wet	
 Surface 						
 Internal voids* 						
* By means of suction?		Ν				
Test Temperature						
Artificial Heating	Y	N				
 Surface 						
○ Minus 25mm						
• Other (mm)						

Test Guidelines (cont)

Trafficki	kN:						
Tyre Pres	Tyre Pressure @ 25C						
Tyre Tree	d (Standard/Special)						
Assumed	Contact Stress		kN/m ^{2:}				
Axle Loa	d Applications /h						
1800	2400						
Airport	SteepGrd/ Intersections >Truck						
Boundar	Boundary Conditions						
 Comp 							
 Metal interfa 	l mould+bitumen rubber	emulsion					

Draft Protocols for Acceptable Rutting Performance HMA > 75mm									
Lab Field									
		Max Ru	itting und	er Traffi	cking	to 100	k axles	5 (mm)	
Preparation & Test mode	1	1 2 3 4 5 6 7 8							
Hwy Speed						3		3	
>>Truck Steep Gradients/ Intersections	2.5	2.5	2.5	2.5	2.5	2.5		2.5	
Airport	1.8	1.8	1.8	2		2.2		2.2	

Draft Protocols for Acceptable Rutting Performance HMA 40 – 60 mm								
Lab Field								
Max Rutting under Trafficking to 100k axles (mm)								
Preparation & Test Mode	1	2	3	4	5	6	7	8
Hwy Speed					2.2		2.2	
>>Truck Steep Gradients/ Intersections	2.5	2.5	2.5	2.5	2.2		2.2	

Commercial Laboratory Applications of MMLS3 in South Africa for Road and Airport authorities

Report to MMLS3 User Group Meeting at TRB 2012 by

- Specialised Road Technologies
- Roadlab

Applications

- 28 Test for Airports
- 108 Highways

Summary of Commercial MMLS3 Tests S A in 12 mo

SRT	Roadlab	Total
98	38	136
98	24	122
0	14	14
83	35	118
15	3	18
35	6	41
63	18	81
89	36	125
5	2	7
4	0	4
88	32	120
10	3	13
0	3	3
	98 98 98 0 83 15 35 63 89 5 4 88 10	98 38 98 24 0 14 83 35 15 3 35 6 63 18 89 36 5 2 4 0 88 32 10 3

Field MMLS3 applications with air heating ducts and surface dam for circulating water

Some Findings from Historic Applications by MMLS3 Users since 1997

- Wet trafficking: Affected loss of strength, stiffness, micro- cracking, stripping. AASHTO T283 not always compatible Walubita et al. 2002
- Supplemental tests are frequently employed such as PSPA; SCB to gain confidence in the findings of the APT
- Raab et al 2005 reported wet trafficked cores increased rutting as much as 30 to 50 percent greater than dry cores. 1

Some Findings from Historic Applications by MMLS3 Users since 1997

- Research completed subsequent to the last HVS and MMLS3 test on the R80 project focused on identifying appropriate test protocols and criteria for design of HMA, yielded some interesting findings:
 - 1. With trafficking speed of the MMLS3 similar to the HVS rutting deformation was similar for the same conditions.
 - 2. Differences in trafficking modes (uni and bidirectional) resulted in differences in rutting performance with uni-directional more aggressive

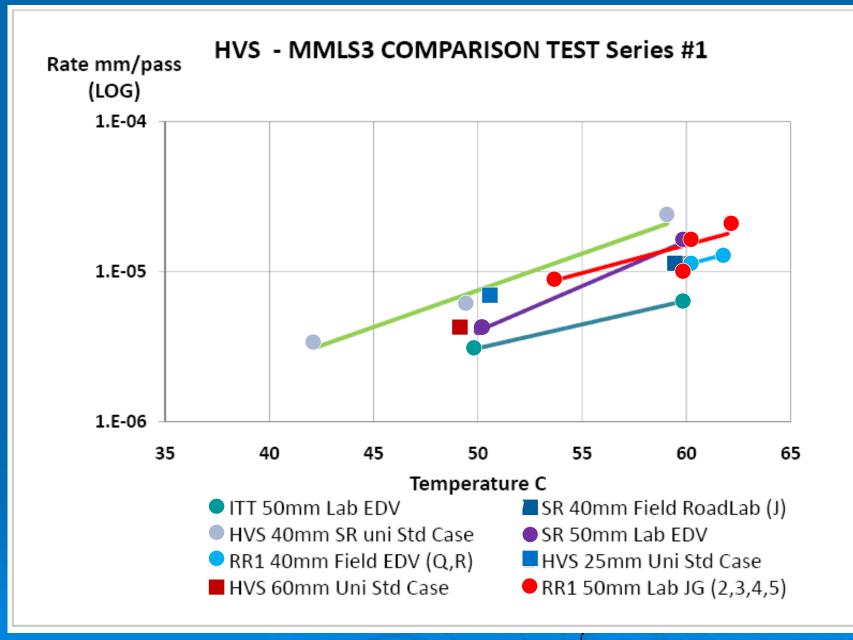
The papers in the referenced bibliography were reviewed and synthesized. The findings served as benchmarks for the criteria included in DPG1 Protocol It was concluded that the Protocol as currently drafted was compatible with the findings

Conclusions from the Case Studies.....

- Clear evidence of relationship between slow speed MMLS tests and field rutting performance of HMA under harsh full-scale trafficking:
 - Slow heavy traffic with high tyre pressures
 - High temperatures
- 2. MMLS and HVS rutting performance trends in terms of rate of rutting under similar conditions, compare well
- 3. Ability to scale MMLS HMA *field and laboratory performance analytically to actual field rut performance* as per *DPG1* confirmed

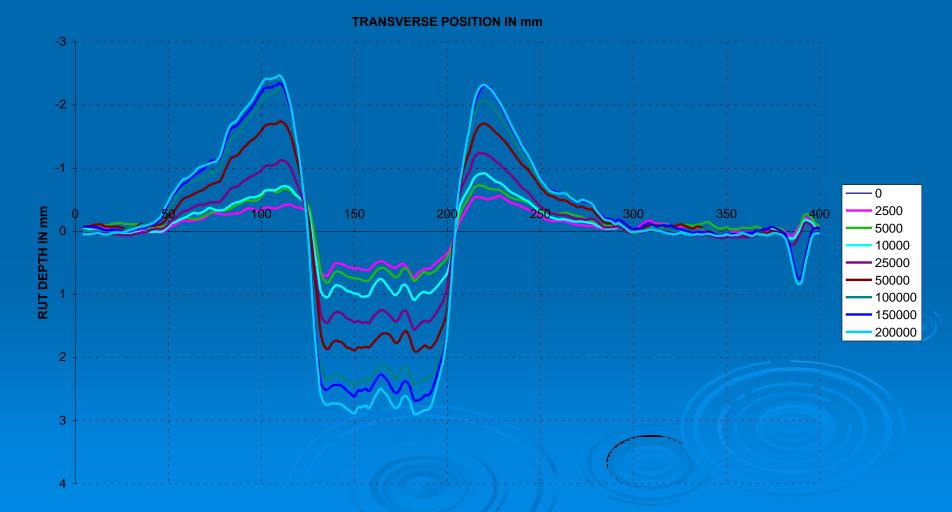
Conclusions (cont)

- 4. Change of original 2004 Baton Rouge protocol limit of < 1.8mm rutting under 7200 appl/h trafficking for airports to the same limit under 1800 appl/h validated
- Comparative case studies between full-scale trafficking and MMLS3 cover extensive and diverse geographic areas. Positive validation of guidelines in the draft Protocol DPG1 established.
- Support for application of the MMLS as APT tool for evaluation of bituminous road paving mixtures


Draft Test Protocol (DPG1,2008) is

Method for evaluation of permanent deformation and susceptibility to moisture damage of bituminous road paving mixtures using the Model Mobile Load Simulator (MMLS3)

NB: load frequency and temperature are the important test variables......


HVS and MMLS3 on R80 Pretoria-West

Rutting Profiles - Heave (left and right@ 450mm) MMLS3 Data Processing (R80 Pta West)

TEST Q POSITION 450 - 2.9 kN 750 kPa 2400 per Hour

Since the original report by Epps et al 2002 the mechanistic approach has been succesfully applied in a variety of ways to render the system as one that passes the test of reasonablness CS 4 Dubai and Australia (Airport pavements) [Client/Supervising Consultant]

Application: MMLS3 used to evaluate pavement performance under Boeing 777 trafficking on a Taxiway

MMLS3 - Boeing 777 simulation on a DIA Taxiway

Conclusion: MMLS3 test found viable to evaluate pavement performance under aircraft trafficking of a taxiway! Dubai Intl Airport (DIA) Analytical Rutting Performance Prediction using MMLS

- MMLS used to calculate estimate of field rutting to compare with measured rutting of HMA pavement
- Boeing 777-300 adopted as design aircraft at DIA for comparative analyses modelled at 1533kPa tyre pressure and 269kN tyre load.
- The MMLS was modelled at 700kPa and 2.9 kN tire load (equivalent to maximum take-off weight).
- Methodology in MMLS3 Protocol DPG1 (2008)
- > Originally published by Epps et al (2003) Comparing Pavement Response and Rutting Performance for Full-Scale and One-Third Scale Accelerated Pavement Testing Jnl Transportation Eng Vol. 129, #4, pp. 451-461.

Wearing -Intermediate Intermediate Basecourse Basecourse

Basecourse

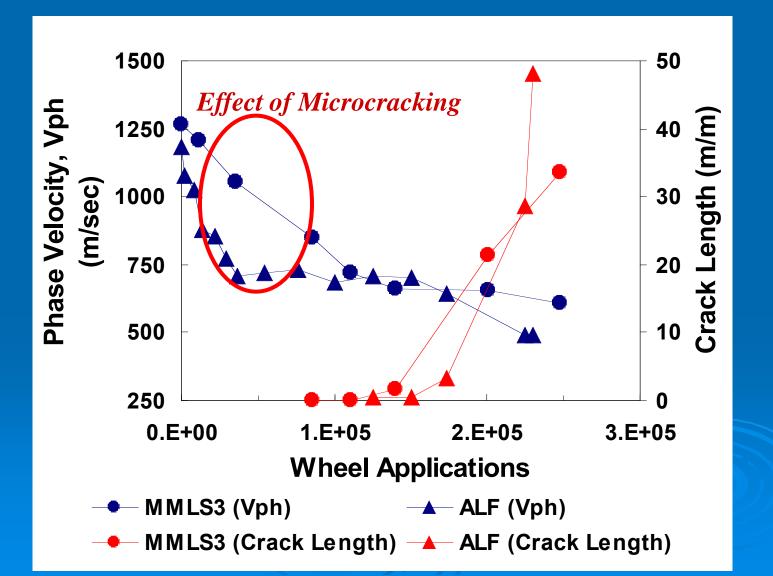
Subbase

Subgrade

MMLS3 on Taxiway Analysis BC20 PG76 Cariphalte Fuelsafe -BC20 PG76 SBS **Modified Binder** BC32 60/70 Bitumen BC32 60/70 Bitumen BC32 60/70 Bitumen **CT Fine Crushed Rock**

Natural Sandy Subgrade CBR=15

Rutting results from analytical procedures


Dubai Intl Airport

- Remarkably close to actual measured values.
- As example Taxiway M north of Runway 12R30L: ruts measured 32-34 mm compared to calculated scaled rut depth of 28.3mm.
- Traffic volumes were estimated to have been
- > 20 000 aircraft movements.
- **Cape Town Intl Airport**
- The design of the HMA was also done with on the basis of a quantitative analytical approach. Fatigue evaluation was also included in the process.

A case study of Fatigue and Surface Wave Tests under MMLS3 and ALF trafficking is an example (Lee & Kim @ NCSU)

A mechanistic approach was also found successful in relating rutting and fatigue response and performance prediction in the application of the MMLS3 to ALF full-scale tests

They found that algorithms similar to MEPDG Design Guide could be used with adjustment for the MMLS3 loading frequency using the time-temp superposition principle with growing damage. This rendered the performance prediction to be reasonable CS of Fatigue and Surface Wave Tests under MMLS3 and ALF trafficking (Kim @ NCSU) in Paper Hugo et al. 2012 APT2012 conference

Fatigue cracks after MMLS3 trafficking of Scaled Pavement at NCSU (Kim et al 2012) Paper submitted to APT2012 conference

Closing Remarks

Draft Test Protocol: (DPG1,2008) was referenced to more than 60 percent of commercial asphalt tests in So Africa in 12 months

- Ref source: www.sabita.co.za
 - Search & Download under Reports
- The importance of correct specification for tests in terms of speed and temperature of trafficking is evident
- The Organigram Outlines the System and engineers and technologists are urged to carefully formulate the test specifications as designs