PAVEMENT REHABILITATION using BITUMEN STABILISATION

STATE OF THE ART

23rd Road Pavement Forum Fern Hill Hotel, Tweedie, KZN Wednesday 9th May 2012

Dave Collings

THE LONG TERM BEHAVIOUR OF BITUMEN STABILISED MATERIALS (BSMs)

Understanding non-continuously bound materials

Dave Collings Kim Jenkins

Conference on Asphalt Pavements for Southern Africa

ATHENS – CORINTH HIGHWAY, GREECE

Conference on Asphalt Pavements for Southern Africa

200mm – 300mm recycled

2.0% – 2.3% foamed bitumen 1.0% cement

2002

NTUA MONITORING SECTION

NTUA – FWD SURVEY DATA

REVISITED APRIL 2010

8 years after rehabilitation

> 50 000 000 ESALs

Conference on Asphalt Pavements for Southern Africa

6.9 **ESAL**

8

± 100 000 vpd 15% heavy 7 500 heavies / day

(13 ton legal axle load)

ADE ± 30 000 / day (4 ESALs / heavy)

9 000 000 ESALs / year

NTUA MONITORING SITE

Conference on Asphalt Pavements for Southern Africa

Meeting of the minds

Conference on Asphalt Pavements for Southern Africa

2 MONTHS LATER...

RPF November 2011: Progress Report on the SAPDM

The design and performance of stabilised material

H L Theyse

Technical Guideline: Bitumen Stabilised Materials

A Guideline for the Design **C**¹d Construction of Bitumen Emulsion and Flamed Bitumen Schilised Materials

ASPHALT

TG2 Second edition Technical Guideline: The Design and Use of

Foamed Bitumen Treated Materials

The real problem

TG2 2002 structural design: Catalogue for new construction

Category A – 10 miSA

3 "miSA" limit (3 000 000 ESALs)

No FB design!

TG2 2002 structural design: Catalogue for new construction

Category A – 30 miSA

Typical SA pavement

B cat road / wet climate

IS THIS REASONABLE ??

< 3 million

TRANSFER FUNCTIONS

The "Effective Fatigue" equation

 $N_{EF} = 10 \ [6.499 - 0.708(\epsilon_h/\epsilon_b)]$

The Permanent Deformation equation

N _{PD.FB} = 1/30 x 10 [k+11.938RD+0.0726PS-1.628SR+0.68(cem/bit)]

The Permanent Deformation equation

1% cement / 3% foamed bitumen

 $D_{\rm FB} = 505\ 683\ 455\ 820$ (505 683 x 10⁶) ESALS

Add cement !!

ΜΔΤΕΡΙΑ		ITS* at 25 C (kPa)				
		100 – 300	300 – 500			
UCS at 25 C	700 – 1400	FB4	FB3			
(kPa)	1400 – 2000	FB2	FB1			

* unsoaked ITS

Someone is out of step...

Objective of presentation

- The objective is <u>not</u> to prove that foamed bitumen or any other type of stabilisation does not work
- The objective is to question the current design philosophy behind foamed

bitumen treatment

Based on laboratory data and field observations, not philosophical argument

CONSTRUCTED IN 2001

"BSM1" (crushed stone) 2.3% bitumen / 1% cement Design (J&G / Stellenbosch University): 7 x 10⁶ ESALs Power Construction

After 10 X 10⁶ E80 load repetitions

Technical Guideline: Bitumen Stabilised Materials

A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials

Second edition

2011 observations: "Cracks observed" "Start of fatigue failure"

Reality: ± 200m settlement / isolated cracking

CONSTRUCTION DEFECT

2.5m

-

2.5m

CLASSIC OVERLAP DEFECT

KEY COMMUNITY ACCESS ROAD

+100km to closest G5 material source

19 / 6.7 mm double seal (after 3 years) Double slurry seal

250 mm BSM base (Blends of sand / gravel / silty-sand / crusher dust)

Sand subgrade

Rutting on in-service sections

- R22 Mseleni Phelendaba
 - 250 mm sand and calcrete mixture
 - 4 % binder, 2 % lime
 - Constructed 2002 rut survey 2008
 - 90th percentile rut = 18 mm

FATIGUE CRACKING

19 / 6.7 mm double seal

150 mm C4 base (Doorbank)

150 mm C4 subbase (recycled gravel wearing course)

Sand subgrade

Objective of presentation

- The objective is <u>not</u> to prove that foamed bitumen or any other type of stabilisation does not work
 - The objective is to question the current design philosophy behind foamed bitumen treatment
 - Based on laboratory data and field observations, not philosophical argument

Philosophical argument?

South Africa: KZN DoT (since 1996)

KZN: MR 63 (2004)

Philosophical argument?

South Africa: **KZN DOT** (since 1996) Ethekwini Metro (since 1997) **Old Main Road, Pinetown** M5 Westmead Industrial Area M5 Queensburgh **FIFA World Cup projects** Many many more...

BSM1 (RA material) In plant mixed / paved

BSM1 In situ recycled

Philosophical argument?

South Africa: KZN DoT (since 1996) Ethekwini Metro (since 1997) Other Provincial Main Roads

MPUMALANGA

BETHAL – KRIEL

RECYCLED / BSM-FOAM (JUNE 2005)

BLEEDING: SUMMER 2005 / 6

and the second of

HIGH TEMPERATURES / HEAVY LOADS (COAL)

BETHAL – MIDDELBURG

< 12 months after rehab

BETHAL – MORGENZON

G1/C3

< 12 months after rehab

BETHAL – KRIEL

7 years later...

3km HMA Section (Kriel Town – Power Station)

(25mm HMA)

Philosophical argument ?

South Africa: KZN DoT (since 1996) Ethekwini Metro (since 1997) Other Provincial Main Roads Specialist laboratory for BSMs

Client:	BSM LABORATORIES (PTY) LTD Bitumen Stabilised Materials Testing Laboratories Reg. No. 2009/023623/07 VAT No. 4630255141 25 Westmead Road, WESTMEAD, 3608 KZN, South Africa Telephone No. +27 (0)31 700 1333 FAX No. +27 (0)31 700 1909			B LABORATORIES	BSM LABORATORIES (PTY) LTD Bitumen Stabilised Materials Testing Laboratories Reg. No. 2009/023623/07 VAT No. 4630255141 25 Westmead Road, WESTMEAD, 3608 KZN, South Africa Telephone No. +27 (0)31 700 1333 FAX No. +27 (0)31 700 1909				
Project.	A Typical Main Road	Date Receive	d 05 January 2011	Client:	EXAMPLE PROJECT		Job Card No)	123
Sample Number:	1111	Date Received	10 January 2011	Drojecti	A Typical Main Road		Doto Doosiyo	d	05 January 2011
Sample Number.	Contractor	Date Pesied.	10 January 2011				Dale Receive	u	05 January 2011
Cample Delivered by.	Contractor	Date Reported	a 14 January 2011	Sample Number:	1111		Date Tested:		21 January 2011
F	FOAMED BITUMEN MIX D	DESIGN REPORT - LEVEL	1	Sample Delivered By:	Contractor		Date Reporte	d	26 January 2011
MATERIAL TO BE STAB	ILISED Aggregat	es Bitumen	Active Filler	FOAMED BIT	UMEN MIX DESIGN	REPORT - LEV	EL 3 : TRIA	XIAL	TESTS
Description	Bo D Br Otz Bobblog		Limo						Active Filler
Location / Source:							-	\rightarrow	Lime
Maximum Dry Density								\rightarrow	Northorn Limo
FOAMED BITUMEN ST							-	(0())	
Compactive effort								(%):	8.0
Date moulded		l-omi i	ICIO	n X, F		$\mathbf{O2}$			
Foamed Bitumen adde			IJIU						P
Bitumen foaming condit								0	lameter
Type and percent filler a								_	
Moulding moisture conte							- P		
TEST DESULTS							(*	C)	175
ITS dry									
Moisture content at break									152
Dry Density	Г ПЛ:	V Dool				ah			298.1
Temperature at break		X Desi		UA/r	Lesea	CI			8.0
ITO			J			•••			2072
II S wet									
Dry Density									
Temperature at break			> 200	IKSMI		-SIG	NSI		200
Tanaila Otranath Datair									42.5
				_					3.8
BASED ON ITS DRY AN				(<u>)))</u>					24.7
420%									
370									2339.4
320									
₹ 270									
E 220				Major Principle Stress		1110	1015		
170		to 2075		at failure (σ _{1,f})	(KPa) 1284	1419	1816		2339
120		2050							
1.75 2.00	1.75 2.00 2.25 2.50 1.75 2.00 2.25 2.50 SHEAR PROPERTIES: COHESION (C)								297
	Foamed Bitumen added Foamed Bitumen added TG2 (2009) Material Classification: BSM 1								43.8

Philosophical argument ?

South Africa:

Offshore:

KZN DoT (since 1996)
Ethekwini Metro (since 1997)
Other Provincial Main Roads
Specialist BSM laboratory

North America (Canada, Alaska, USA, etc.) South America (Brazil, Chile, Peru, etc.) Africa (Zambia, Namibia, Kenya, etc.) Asia (Mainly China) Europe (Greece, Italy, Croatia, etc.)

KENYA. 100km "Rift Valley project" (2008) Mau Escarpment – 4km steep gradient Hot daytime temperatures

19mm Cape Seal 175mm BSM 1 base

300mm C3 cemented subbase (UCS < 3MPa)

150mm selected subgrade CBR > 15

Subgrade CBR 10

Athens – Corinth Rehab Project

9 000 000 ESALs / year

8 years :

> 50 000 000 ESALs

± 100 000 vpd 15% heavy 7 500 heavies / day (13 ton legal axle load) ADE ± 30 000 / day (4 ESALs / heavy)

ALASKA, 2002

. Red Dog Mine Ketzebrie

Rever

- _ arctic arela -

. Earbanks

nome

alaska

anchorage

C) agigtugiutin to Rad Dog Gurport Alar 985 ft.
C) Gib au malan Gum ancrosoga 106 milas Rosta of the aret - Car I Stabilised 200mm imported G2 material Foamed bitumen addition: 2.5% No active filler added (cement or lime)

Completed BSM base before surfacing (chip seal)

BRAZIL

Ayrton Senna Highway

AADT > 250,000vpd (15% heavy) (> 15,000 heavies / day in each direction)

50mm 100mm

200mm

200mm

200mm

AADT > 250,000vpd (15% heavy) (> 15,000 heavies / day in each direction)

After 6 months...

> 3 x 10⁶ ESALs

Philosophical argument ...

 \mathcal{N}

> 5 000 km successful projects

22 2001

ST.S

Bitumen Stabilised Materials

A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials

TE2 Second edition May 2009

200

Based on laboratory data and field observations....

Still need a meeting of the minds...

FARENCE U