SOUTH AFRICAN PAVEMENT DESIGN METHODS: THIN SURFACINGS

Improved Damage Models for Bituminous Materials (Project PB/2006/D-1): Part 2 – Thin Surfacings

Progress: RPF May 2012

Dr TI Milne

Godzilla's daughter?

Acknowledgements

Prof K Jenkins (SU) Prof W Steyn (UP) Prof A Visser (UP) Dr M de Beer (CSIR) G van Zyl (SU and MyCube) **E Mukandile (UP) J Gerber (SU) B** Verhaeghe (CSIR) L Kannemeyer (SANRAL) SAPDM Materials Cluster CSIR and SASOL

Contract of the state

Project WBS : Performance Modelling

Progress as at RPF May 2011

Inception phase: March 2010 to April 2011 – COMPLETE

Seal Modelling: commence skills transfer May 2011

- CURRENT

Lab testing: commence skills transfer May 2011

- CURRENT

Progress as at RPF May 2011....

- Bitumen characterisation: Lab tests: commence July 2011
- Base characterization: Lab tests: commence July 2011
- Traffic modelling: commence September 2011
- Field assessment: commence July 2011
- Completion scheduled: end 2013/mid 2014

Progress as at RPF May 2012

Inception phase: March 2010 to April 2011 – COMPLETE

Seal Modelling: commence skills transfer May 2011, ongoing

- CURRENT

Lab testing: protocols and skills

- COMPLETE

Progress as at RPF May 2012....

- Bitumen characterisation: Lab tests: commence July 2011 : Commenced December 2011
 CURRENT
- Base characterization: Lab tests: commence July 2011 : Commencing Currently

!!!!!

 Traffic modelling: commence September 2011
 Input COMPLETE
 Modelling CURRENT

 Field assessment: commence July 2011 : Commenced September 2011
 CURRENT

Completion scheduled: end 2013/mid 2014

THE SOUTH AFRICAN NATIONAL

1. 1. 1. N. 1. 1. 1. 1.

- Design curves for :
 - Specific traffic loading
 - Climate
 - Base type
 - Seal type
 - Binder types (Straight/Modified)
 - Aggregate type and size (Acidic/Basic)
- Using modelling for "performance testing", incl ageing, fatigue
- Design tool for specific high end seals
- Associated laboratory tests to reflect actual characteristics of binder, and selection of applicable curve

Performance Modelling : Binder Damage and Response

THE OWNER WATER

Binder Damage and Response Modelling, Adhesion

Rheological and adhesion characterisation of bituminous road seal binders for mechanistic design methods

Bitumen Tests

Binder Preparation tests

- Aging of fresh bitumen:
 - using Pressure Aging Vessel (PAV)
- Water conditioning of Sample
 - Using Vacuum Vessel
- Bitumen mastic preparation
 - Mastic= binder, sand and cement
- Bitumen extraction from site seals:
 - using SABITA Manual 29.

- Binder and Adhesion Characterisation Tests (using DSR)
 - Test done on **fresh binders and aged binder** and on **extracted binder** from site.
 - Binder film shear response tests
 - Binder/Mastic column fatigue tests
 - Stone column adhesion test
 - for
- Master curves
- Binder fatigue model
- Adhesion Model

Binder Film shear response test

Binder/Mastic column fatigue tests

Stone column adhesion test

Current Progress

Development of test protocols

- Binder extraction
- DSR tests for Binder characterization
- Confirmation of binders and compilation of test stock
- Confirmation of aggregate, coring for DSR and SU adhesion tests
- Confirmation of ageing tests and protocol
- Interaction with Bitumen Specification Working Group

Performance Modelling : Seal System

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

And the state of t

Base Damage and Response Modelling, Seal System Performance Model

Modelling the Seal

Modelling scales

Table 1.1 Order of pavement design scales

	Global	Macro	Meso	Micro	Nano
Graphical Representation					
Geometry & Material	Real road (full scale)	Indiviciual layers of homogeneous/ elastic materials	Individual particles with laboratory testes properties	Single aspect of a particle is considered	Structure of individual particle

Software

- Abaqus
- Matlab

Response model development (G1/2 base)

Incremental development using CT-Scan geometry

(a) Linear elastic, homogeneous, isotropic base
(b) Hyperelastic, homogeneous, isotropic base
(c) Hyperelastic, heterogeneous, iso/anisotropic base
(d) Dual system able to portray permanent deformation

Ideal seal structure exercise (2 layers of stone)

Granular base geometry establishment

Extracting in-situ samples

Granular base geometry establishment Extracted sample & representative CT-Scan

Reseal on G5 base

2D CT-Scan meso-scale model

Current Focus Points

Seal stone embedment data

 At which stage and phase does mechanical damage due to traffic originate?

Access to accurate granular material (G1/2) Lab data. – E.g. Triaxial, repeated load CBR, effect of moisture etc.

Seal Performance Model

Model Main Interface

Seal Performance Model Model Configuration

The second second

STATISTICS.

Seal Performance Model Seal Selection

and a state of the state of the

STATISTICS.

a log log of

The season of th

and a state of the state of the

Seal Performance Model Stone 'Chip' Properties

Seal_Design_Analysis_	Input_File_Generator		
Getting Started	Model Configuration	Seal Selection	Binder Selection
	Chip_Properties		
Chip Properties	Aggregate <first layer=""> 🗸</first>	Aggregate <second la<="" td=""><td>yer> 👻</td></second>	yer> 👻
	Spread Rate <first layer=""> 👻</first>	Spread Rate <second la<="" th=""><th>yer> 👻</th></second>	yer> 👻
Properties Incomplete	User Spread Rate	User Spread Rate	g
	ALD (first layer)	ALD (second layer)	
	FI (first layer)	FI (second layer)	
	Precoat <first layer=""></first>	Precoat <second la<="" th=""><th>yer> 👻</th></second>	yer> 👻
	First Layer:		
	OP nominal size	_	
	Cancel		ок

THE SOUTH AFRICAN NATIONAL **Seal Performance Model Loading Conditions**

ROADS AGENCY

The second second

STREET, STREET, STREET, ST.

a log log of

NAMES OF TAXABLE

IN THE OWNER.

Seal Performance Model Import Input File

Interactions	
inclusion repetites	
Contact Initializations	
Constraints Name: Job-1	
Amplitudes	
Loads	
BCs	
Predefined Fields	Select Input File
	Directory: 📴 Feb2012 🛛 🔽 🖻 🏠 🥕 🏕 📪 🖦 🏢 🗂
Annotations	
⊨‡‡ Analysis	
Dobs	
Co-executions	
	<u>F</u> ile Name: Model.inp
4 III >	File Filter: *.inp

Current Progress

Development of seal performance model

- Input file design approach
- Includes seal design criteria
- Includes base response model(s)
- Incorporates refined SIM traffic loading model
- Forms foundation of mechanistic seal model development
- More field sample extractions
- Base material response model
 - (Development continues)
- Development of tyre loading model

Empirical Modelling

THE SOUTH AFRICAN NATIONAL ROADS AGENCY

THE R. P. LEWIS CO., Name

Fatigue (Cracking) and Field Verification

Study Phases

Phase 1 (Existing models, matrix, hypothesis,data)
Phase 2 (Confirm data, mark and assess sites)
Phase 3 (Sampling, testing, database)
Phase 4 (Modelling)

Scope of Verification

• Surfacing (Wearing course – if well constructed).

Field Sampling Matrix

ROADS AGENCY

1	Table 2 Seal and binder types												
3			Conv Binder	Mod Binder	Total								
		13mm + 7mm	6	6	12								
	Multiple Stone	19mm + 7mm+ 7mm		7	7								
		19mm + 9mm											
		Sub-To	tal 7	13	20								
	Cana Saala	19mm Cape Seal	10	0	10								
	Cape Seals	13,2mm Cape Seal	1	0	1								
		Sub-To	tal 11	0	11								
		<i>let</i>											
	Cingle Stope	13mm tingle Seal	2	1	3								
	Single Stone	9mi Single Seal	1	0	1								
	.0	Sub-To	tal 3	1	4								
	, KY 1												
		То	tal 21	14	35								

Data Set 1: Final Sections (35)

Data Set 2: WCPG Sections)

37 Road Sections remaining 500 m Segments (Assessments 50m both sides) Assessments according to HDM4 and TMH9 Pavement structure, reseal history, FWD, RQ and Rut Since 1996 Latest assessment (2011) now captured

(HDM4 Cal

Assessments Recorded

Detailed visual

- (10m – Shoulder, OWT, between and IWT)

Photographs of each defect type

Texture measurement

(Wheel track, outside wheel track)

m 23.5 533o43'26 EDNo4F47 7

		Serlaced Shoulder					Outer wheel track				Between wheel tracks				Inner wheel track					
	Croe	Long	Trans v C	AggLoss	Fattin	Croc	Long	Transv	Agg Loss	Fattines	Cros pattern	Long	Trans v C	Agg Loss	Fattin ess	patter	Long	Trans v C	Agg Loss	Fatti
	0	0	0	0	0	0	0	1	0			.0	1	0	0		T.	0	0	0
- 110	0	0	0	0	0	0	0	0	0	0	(0)		0.	0	0	2	(0)	0	1	0
14	0	0	0	0	.0	0	0	٥	0	0		٥	0	0	0	3	1	0	٥	0
	0	0	.0	0	0	0	.0	9	0	0.			0	0	0	2		0	•	0
	10	0	0	0	0	0	0	1000	0		0		- ¥.	0	0	3	0	0	0	0
109	0	0	0	0	9	9	.0	٥	0			٥	0	0	0	3		0	0	0
1	0	.0	0	0	0	.0	0	. 0	0	0.	0.85		0	0	0	3		0	0	0
	0	0	0	0	0	0	0	0	0	- 0-1	0	0	0	0	0	3	0	0	0	0
33	0	0	0	0	0	0	0	9	0				0	0	.0	3		0	1	0
	0	0	. 0	0	0	0	0	.0	0		0.80	.0.	9 2	0.	0	3		0	1.1	0
	0	0	0	0	0	0	0	0	0	0			0	0	0				1.	0

Sampling Verified / adjusted sampling process and repair

- Safety
- Sample marking
- Transport & storage

Process....

Sampling

New seals or high surface temperature

Slab disturbed (crack)

Smaller samples

- (700x500) into 2 or 3
- Binder recovery (50ml)
- MTS (200x 200)

Additional Testing Required

Radius of curvature

- Benkelman Beam
- (Base condition and pavement response of sample pavement)

2 MARCH

Current Progress

Phase 1 (Existing models, matrix, hypothesis,data)
Phase 2 (Confirm data, mark and assess sites)
Phase 3 (Sampling, testing, database)
Phase 4 (Modelling)

Concluding Remarks

- Model materials characterization will be within the Bitumen Spec Working Group suite of tests (DSR, PAV)
- Performance model will be used to generate design curves
- Performance model will be calibrated and verified (Fieldwork)
- Seal model is an integral part of the SAPDM

a series

THE R. P. LEWIS CO., Name

