Sustainability of Concrete Roads

B D Perrie C&CI

RPF May 2012

- Sustainability is critical
- Means designing and constructing structures to last longer
- More energy efficient designs
- Less use of materials
- Recycling
- Need for assessment tools

ENVIRONMENT

Environmental Aspects

Carbon footprint and LCA

Fuel consumption

• CO₂ emissions

• Other eco-benefits

Carbon footprint and LCA

Fuel consumption

Fuel Consumption

- Number of studies
 - National research Council, Canada
 - TRL for Highways Agency
 - Sweden
 - Japan
 - Texas
- 0.8% to 3.9% saving
- Average 2.35%

CO₂ Emissions

Cement type	Average emission values (kg CO _{2e} /ton)
CEM I	985
CEM II A-L	840
CEM II A-S	815
CEM II A-V	790
CEM II B-L	720
CEM II B-S	730
CEM II B-V	690
CEM III A	560
CEM IV A	640
CEM IV B	570
CEM V A	590
CEM V B	415

Extender type	Average emission values (kg CO _{2e} /ton)	
FA	2	
GGBS	130	

Model

- CEM I 985 kg CO_2 e per ton
- CEM I Concrete 300-350 kg CO₂e m³

 125 146 kg CO₂e per ton

 50:50 Concrete 200-230 kg CO₂e m³

 84 96 kg CO₂e per ton

Other Eco-benefits

Environmental Aspects

- Permeable pavements
- Pollution reduction
- CO₂ uptake
- No hazardous leachates
- Local material
- Recyclable
- Heat islands

ECONOMY

• Life-cycle cost analysis

	Asphalt	Concrete
Initial costs	R6 102 000	R7 547 000
Maintenance costs	R1 434 000	R 669 000
PWOC	R6 643 000	R7 856 000

	Asphalt	Concrete
1984 Predicted	R6 643 000	R7 856 000
1984 Actual	R8 160 000	R8 264 915

- Life-cycle cost analysis
- Cost of lighting

- Life-cycle cost analysis
- Cost of lighting
- Price stability

- Life-cycle cost analysis
- Cost of lighting
- Price stability
- Pavement type competition

SOCIETY

Social Aspects

- Labour intensivity
- Less congestion
- Ride comfort
- Safety
- Noise

CONCLUSIONS

CHOOSING A CONCRETE PAVEMENT IS CHOOSING A SUSTAINABLE SOLUTION

Sustainable Solutions to Global Transportation Needs July 8 -12, 2012 Québec City, Québec Canada

www.concretepavements.org

INTERNATIONAL CONFERENCE ON LONG-LIFE CONCRETE PAVEMENTS—2012

September 18–21, 2012 — Seattle, Washington

ACPT ADVANCED CONCRETE PAVEMENT TECHNOLOGY

http://www.fhwa.dot.gov/pavement/concrete/2012conf.cfm.

Thank you

... for listening!

Knowledge, Expertise,

www.cnci.org.za