## Recycling Using High Percentages of RAP and Rejuvenation of PAC wearing courses

### André A.A. Molenaar

#### emeritus professor Delft University of Technology the Netherlands

based on PhD work by Mohamad Mohajeri (Iran) and Yuan Zhang (China) co-supervisor: Martin van de Ven and work by Jian Qiu (China) BAM contractors (former PhD) sponsors: van der Lee contractors; Ministry of Transport; Chinese Scholarship Council BAM contractors; Ministry of Transport and Delft University of Technology



### A Dutchman in SA: what does he experience ?

Nature





Food and wine



Culture

History and Politics











### ..... **RUGBY** .....

#### Rugby skills = a\*muscles + b\*speed + c\*braai + d\*boerewors + e\*castle



not to be confused with Lintworm or a brown Mamba!



# This also seems to be a potent combination !





## AND THERE IS ANOTHER AMAZING THING WHICH IS CALLED ....



## **CRICKET !!**

January 21, 2015



7



## Is it a game for disabled men ??!!





# Coverage is "hocus pocus" for a normal person.

"Younus used his feet to good effect, laundring Lyon over wide long-on for the only six of the day"



## **Google translate English - Dutch**

"Younus used his feet to good effect, laundring Lyon over wide long-on for the only six of the day"

"Younus gebruikt zijn voeten met goed resultaat, was doen Lyon over een breed lange -on voor de slechts zes van de dag"

## HELP, THIS IS EVEN WORSE !!



11

### • Lyon ?? Does he mean the Lion king or what ??

 You say "yis" instead of "yes" and "thisis" instead of "thesis" so "six" = ...





## So this is what I understood !!!

Younus used his feet to good effect, laundring Lyon over wide long-on for the only six of the day

Younus was dancing while he was washing a lion's wide long-john for the only sex of the day



## **Additional Rules**

- LBW is proper way to defend a wicket; should be allowed
- Batsman should be allowed to kick the ball or make a header in order to prevent the wicket to fall
- Bonus: kicking 2 runs and heading 18 runs
- Batsman should be allowed to catch the ball; then the bowler is out

## Hot Mix Recycling, Blending and Rejuvenation

(RheoFalt HP-EM<sup>tm</sup>; Rasenberg Contractors and van Wezenbeek Specialties)

Resin Roofing material RAP



**Courtesy: Rasenberg Contractors** 



## **Importance of Recycling and Rejuvenation in the Netherlands**

- Recycling: this is a MUST and we need to use high RAP percentages because of environmental and economical (RAP = €€€) reasons and lack of space
- Rejuvenation: could be a cost effective and environmental friendly way to extend life of PAC wearing courses on highways



## RECYCLING

January 21, 2015



17

# State of the art in the Netherlands with respect to recycling (EAPA 2012)

- At the moment 4 \* 10<sup>6</sup> ton/year of RAP is available.
- 80 % of the RAP is used in hot and warm recycling; 15% in cold recycling.
- WMA still not very popular.
- 73 % of new HMA and WMA production contains RAP.
- Consumption of bitumen in 2006 : 0.3\*10<sup>6</sup> ton (on 9.2\*10<sup>6</sup> ton HMA and WMA).
- Recycled mixtures containing high % of RAP must comply to same specs set for mixtures made of virgin materials.
- 0% RAP in SMA; 20% in PAC; 50% in all other mixtures.



# Hot mix asphalt plants in the Netherlands (2012)

Number of stationary plants 41 Number of mobile plants 1

Number fit for hot recycling 40 One of them is a double drum mixer and the others are batch plants equipped with parallel drum



### Parallel drum (RAP pre-heated to 130 °C)





#### **Double Drum mixer**





- Can we rejuvenate old bitumen?
- How well do old and virgin bitumen blend?
- What are the consequences of imperfect blending?
- How do super-heated aggregates blend with RAP at ambient temperature with 4% moisture?
- What are the consequences on mixture quality



## Rejuvenators

#### Types available

- Petroleum-based: paraffinic, naphthenic, aromatics, used motor/lubricating oil, etc.
- Bio-based: cashew nut shell resin, palm oil, shale oil, sesame oil, soybean oil, used cooking oil, etc.
- Are rejuvenators materials with simply a lower viscosity or do they also have a "repairing" effect on the aged bitumen ???



## Special Resin to "Upgrade" (rejuvenate) Bitumen (natural product, cashew nuts)



### **100% recycling is possible**

**Courtesy: Rasenberg Contractors Van Wezenbeek Specialties** 



## **Rejuvenating process**

- Step 1: no blending (black stone) →avoid
- Step 2: partial blending +time dependent diffusion →practice
- Step 3: full blending → final aim





## Nano CT scans to test effect of rejuvenator



## **Example of diffusion results**



**″**UDelft

## Conclusion

- Diffusion certainly takes place but it is a slow process
- Later on we will see effect of temperature
- Most probably full blending will not occur



## **Most of time**

- Mixing RAP with softer virgin bitumen to obtain desired characteristics
- We are relying on complete blending of old and new bitumen



## How to determine degree of blending

- "Layer by layer" recovery of bitumen from recycled mixture
- "Glass bead" study
- Mechanical characteristics of recycled mixtures prepared in different ways





## **RAP fractions & binder content**

| Fraction size [mm]                             | 0 - 2 | 2 - 5 | 5 - 8 | 8 - 11 | 11 – 16 | 16 - 22 |
|------------------------------------------------|-------|-------|-------|--------|---------|---------|
| Mass percentage of total<br>aggregate fraction | 22    | 21    | 15    | 18     | 16      | 8       |
| Percentage of binder<br>in that fraction       | 33    | 25    | 11    | 13     | 13      | 5       |

Main portion of the binder is at finer fractions



## Layer by layer recovery of RA binder





## **G\* of extracted binder layers**





33

Janua

## Conclusions

- Differences between successive stages are not significant
- Bitumen recovered from larger fractions seems to be softer
- In general: the recovered bitumen does not seem to be a homogeneous mass

In order to get a better understanding of what is happening when mixing cool RAP with superheated aggregate, blending simulations were made





## **Blending simulation**

 Cold RAP was mixed with same amount of superheated virgin fines, sand, glass beads (representing the coarse aggregates) and virgin bitumen (RAP : new = 1 : 1)
### If blending occurs then Log pen rule applies

Log pen mixture = a Log pen RA bitumen + b Log pen virgin bitumen

#### a = fraction of RA bitumen b = fraction virgin bitumen a + b = 1







# Mixture with 50% RAP (ambient temperature and 4% moisture) and superheated virgin sand, filler, glass beads (coarse aggregate) and bitumen



January 21, 2015



### $G^*$ , $\delta$ and estimated Pen values at 25 °C

|                                       | RAP         |               | GB binder   |                  | Stone binder |               | virgin 70100 |               |
|---------------------------------------|-------------|---------------|-------------|------------------|--------------|---------------|--------------|---------------|
| f [Hz]                                | G*<br>[Mpa] | δ[degr<br>ee] | G*<br>[Mpa] | δ[degr<br>ee]    | G*<br>[Mpa]  | δ[degr<br>ee] | G*<br>[Mpa]  | δ[degr<br>ee] |
| 0,01                                  | 0,323       | 66,6          | 0,113       | 72,7             | 0,064        | 75,7          | 0,006        | 85,6          |
| 0,4                                   | 4,112       | 56,7          | 1,731       | 61,2             | 1,078        | 63,8          | 0,169        | 78,6          |
| 1                                     | 7,089       | 54,9          | 3,118       | 58, <del>9</del> | 1,979        | 60,9          | 0,361        | 76,1          |
| 10                                    | 23,578      | 51,7          | 11,566      | 54,3             | 7,678        | 54,7          | 2,033        | 68,9          |
| 20                                    | 32,302      | 51,0          | 16,372      | 53,2             | 11,010       | 53,3          | 3,250        | 66,7          |
| 100                                   | 61,836      | 49,7          | 33,789      | 51,3             | 23,418       | 50,5          | 8,780        | 61,7          |
| * predicted<br>penetration            | 16          |               | 26          |                  | 33           |               | 88           |               |
| ** log pen<br>rule base on<br>50% RAP | 38          |               |             |                  |              |               |              |               |

January 21, 2015



#### Conclusions

- Log pen rule predicts pen of RA binder after recycling fairly well
- Bitumen recovered from superheated glass beads is harder than bitumen recovered from RAP
- Complete blending did not occur





#### **Double Drum Mixer**

- High amount of RAP (50%) containing 4% moisture at ambient temperature is mixed with virgin aggregates which are preheated to very high temperatures.
- What is the effect on mechanical characteristics



#### **Produced mixture and test methods**

- AC 22 base course mixture
- 50% RAP from base course mixture
- 4% moisture
- IPC PressBox was used to compact blocks from which specimens were taken
- Tests included:
  - mixture stiffness using 4 point bending
  - fatigue using 4 point bending



| Mixture Type                                                                                                                                                   | RAP % | Code                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|
| Moist base course RAP (4%) at ambient<br>temperature is mixed with superheated<br>aggregate (500 °C) in an Astec Double Drum<br>mixer                          | 50 %  | A<br>ASTEC<br>Double<br>Drum |
| Moist base course RAP (4%) preheated at<br>130°C in parallel drum is mixed with hot<br>virgin aggregate (270 °C) in batch plant<br>pugmill mixer (Batch Plant) | 50 %  | BB<br>Batch<br>plant         |
| Preheating (3hrs) and mixing RAP and virgin<br>aggregate at the same temperature in<br>laboratory pugmill mixer (170 °C)                                       | 50 %  | L<br>LAB                     |



#### Mixture stiffness at 20 °C and 8 Hz



#### Fatigue relationships at 16.9 °C / 8 Hz





Januai

#### Conclusions

- For this type of mixture there is no significant difference in characteristics between double drum and batch plant with parallel drum produced mixtures
- Lab produced mixture showed significantly different behavior!
- Using results obtained on lab produced mixtures for pavement design purposes should therefore be reconsidered!

#### REJUVENATION of PAC WEARING COURSES

January 21, 2015



#### **Porous Asphalt Concrete**

- Single layer porous asphalt concrete
  - 50 mm layer with 0/16 mm aggregate
  - bitumen 70/100 pen, void content > 20%
  - noise reduction  $\approx$  3 dB(A)
- Double layer porous asphalt concrete
  - 30 mm top layer 2/6 or 4/8 mm aggregate, with pmb
  - 45 mm bottom layer 11/16 mm aggregate
  - noise reduction  $\approx$  6 dB(A)
- PAC is used on 90% of motorways

#### Another advantage of porous asphalt concrete





January

#### Major damage type is ravelling, potential reasons are:

#### Traffic

- Temperature, UV, Oxygen \_\_\_\_\_ Aging
- Moisture
- De-icing
- Oil spillage
- Working conditions during placement
- Skills of the paving crew



#### Ravelling



#### Severe aging of bitumen in Porous Asphalt Concrete



#### **Preventive maintenance**

- Spraying "rejuvenation" products in thin films (800 gr/m<sup>2</sup>) on porous asphalt layers is being considered as a cost-effective and environmentally sustainable strategy for preventive maintenance.
- Goal is to add extra binder material and to promote rejuvenation.

All products are propriety products and no information about composition is given by producers



## **Spraying of products**



January 21, 2015



#### Jet blower after spraying a certain product







Emulsion, penetration is deeper because of use of jet blower

CT scans on reference mix identified two materials (different density): stone and mortar; some cores treated with "rejuvenation" products show additional binder.



#### **Optical Microscopy test**



Specimens were polished to a thin slice 35 mm x 25 mm x 30  $\mu\text{m}$ 





An additional binder layer without shiny particles (filler or sands) was observed on surface of the mortar



#### **Nano-indentation tests**

An indenter loads the mortar surface with a displacement rate of 5 nm/s until an indentation depth of 1000 nm at -20 °C



#### **Example of indentation results**







## Effect product B Indentation Modulus (IM) IM < 3 Gpa Bitumen rich phase IM > 3 Gpa Filler rich phase

Effect of adding bituminous material is clearly visible



#### **Conclusions so far**

- Nice that we see an effect but what is effect on mechanical properties of the "glue" that sticks the coarse particles together
- Mortar needs to be tested and NOT the bitumen because the mortar is the real glue



#### **Definition of mortar**

- Bitumen.
- Filler (fines) < 63  $\mu$ m includes 25% hydrated lime.
- Fine sand fraction (< 425 μm).</li>
- How do you test a mortar? Use a DSR!



#### **Preparation of mortar column samples**



January 21, 2015



# DSR is used for modulus and fatigue testing



January 21, 2015



#### **Rejuvenation procedure**

Application of emulsion type rejuvenation product on laboratory aged mortar columns



- Step 1: soaking in emulsion bath for 15 minutes at 25 °C
- Step 2: curing in air for 7 days at room temperature



#### Master curves aged and treated mortar



**STP X = product; W= one week curing** 

**ÍU**Delft

#### Fatigue aged and treated mortar





# Effect of rejuvenation on G<sup>\*</sup>, δ and fatigue could not be shown



# Why don't we measure effect on mechanical properties?

Rejuvenation is driven by diffusion
main "handicap" - temperature is too low



#### **Additional comments**

- Effects of diffusion were also measured using the DSR for testing multilayer bitumen systems at 65 °C
- Some diffusion was measured but it was negligible
- This supports the finding that counting on diffusion when using spraying techniques is a "no no"


## So these products will not be effective?

To some extent they will be effective because new, fresh material is added. This effect has been proven in the lab and by means of FE analyses



January 21, 2015





# Thank you for your attention

January 21, 2015







#### an Irish South African might help next time !!

January 21, 2015





#### Soccer skills =



### f (1 / rugby skills)





January 21, 2015



### **Some Statistics**

2500 km main highway system

100.000 vehicles/day 15 % trucks 3.5 axles of 100 kN/truck 9 % overloaded axle loads as high as 24 tons

time slot for maintenance 21u – 5u

20 % inhabitants hindered by traffic noise

6 dB(A) reduction of noise level

2 % < CBR < 5 % in western part of the country





# **Typical highway structure**

50 mm porous asphalt concrete

250 mm asphalt concrete 4.5% 40/60 bitumen, 6% voids

**300 mm unbound base of recycled construction demolition waste** 

sand subgrade

January 21, 2015





#### "to combine or mix so that the constituent parts are indistinguishable from one another"

**But does it occur?!** 

January 21, 2015



# If blending occurs then Log G\*cq Log pen rule applies

 $Log G^{*}_{mixture} = a Log G^{*}_{RA bitumen} + b Log G^{*}_{virgin bitumen}$ 

Log pen mixture = a Log pen RA bitumen + b Log pen virgin bitumen

#### a = fraction of RA bitumen b = fraction virgin bitumen a + b = 1



# $G^*$ and $\delta$ of virgin, stone and GB binders





Jai

|            | Mixture Type                                                                                                                                                                                 | RAP % | Code                         |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|--|
|            | Moist base course RAP (4%) at ambient<br>temperature is mixed with superheated<br>aggregate (500 °C) in an Astec Double Drum<br>mixer                                                        | 50 %  | A<br>ASTEC<br>Double<br>Drum |  |
|            | Moist base course RAP (4%) preheated at<br>130°C in parallel drum is mixed with hot<br>virgin aggregate (270 °C) in batch plant<br>pugmill mixer (Batch Plant)                               | 50 %  | BB<br>Batch<br>plant         |  |
|            | RAP (25% base RAP+25% reclaimed porous<br>asphalt PARAP) preheated at 130°C in<br>parallel drum is mixed with hot virgin<br>aggregate (270 °C) in batch plant pugmill<br>mixer (Batch Plant) | 50 %  | B<br>Batch<br>plant          |  |
|            | Preheating (3hrs) and mixing RAP and virgin<br>aggregate at the same temperature in<br>laboratory pugmill mixer (170 °C)                                                                     | 50 %  | L<br>LAB                     |  |
|            |                                                                                                                                                                                              |       |                              |  |
| January 21 | 1, 2015                                                                                                                                                                                      |       | 82                           |  |



# Master curves at 20 °C for different mixtures



**PARAP** = **RAP** of porous asphalt concrete; binder has very low pen  $\approx$  12



### Mixture stiffness at 20 °C and 8 Hz



# Why do we use very porous asphalt wearing courses

- 25 % of inhabitants are hindered by traffic noise.
- Noise reduction is therefore a hot topic.
- Measures taken at the source are the most effective.
- Sound barriers are not only very costly but also don't reduce noise production.
- Solutions should be found in tire and in pavement surface.

# **Double layer porous asphalt concrete or twinlay**



Top layer 25 mm 4/8 mm aggregate.

Bottom layer 40 mm 11/16 mm aggregate.



# What is ravelling



January 21, 2015



# Rejuvenation

- Goals of rejuvenation is to give the binder its original properties
- Diffusion is to play a major role when rejuvenator is sprayed
- Diffusion "the intermingling of substances by the natural movement of their particles"
- Key parameters controlling diffusion
  - time
  - temperature