High Modulus Asphalt (HiMA) Technology Transfer (T²) May 2010 Progress report

Prepared for presentation at the 19th meeting of the Roads Pavements Forum (RPF), Salt Rock, 5 May 2010

Erik Denneman

Presentation structure

- Background on HiMA,
- The sabita HiMA T² project,
- Progress,
- Preliminary results,
- Way forward.

High Modulus Asphalt (HiMA)

- Origin: France early 90s "Enrobés à Module Elevé" (EME)
- Typical characteristics:
 - High binder content ≈ 6% by mass of aggregate,
 - Hard binder: Pen 10-25,
 - Low air voids content,
 - High Modulus > 14 GPa at 10°C, 25 Hz,
 - High resistance against permanent deformation,
 - Good fatigue resistance,
 - Impermeable,
 - High mixing temperature.

Application examples

Case #1: HMA vs HiMA

70mm HiMA, 9000 MPa

70mm HMA, 3500 MPa 150mm G1, 300 MPa

300mm C3, 1500 MPa

Subgrade, 100 MPa

Case #1: HMA vs HiMA

Case #2: BTB+HMA vs HiMA

Reduction of 130mm in thickness

Slide 6 © CSIR 2006

www.csir.co.za

Case #3: G1+HMA vs HiMA

50mm HMA, 3500 MPa
150mm G1, 300 MPa
300mm C3, 1500 MPa
300mm C3, 1500 MPa
Subgrade, 100 MPa
Subgrade, 100 MPa

Reduction of 130mm in thickness

sabita HiMA T² project

Phase I

Feasibility study

Phase II

Preliminary mix and structural design guidelines

Phase III

Validation through APT, LTPP and lab study

Phase IV

Drafting of guidelines and specs

sabita HiMA T² progress

- Phase I: Feasibility, completed July 2008
- Phase II: Prelim guidelines mix design and structural design
 - Task 1: Finalisation mix designs and benchmarking, partially completed. Task had to be revised after French mix design failed to make specs.
 - Task 2: Structural design and cost comparisons, ongoing
 - Task 3: Experimental design for phase 3, ongoing
- Tests feed into SANRAL revision of SAPDM project

Master curve development

Comparison of mix moduli

Permanent deformation (RSST-CH)

Fatigue results (10 °C 25 Hz)

French mix design effort

Parameter	Requirement	Result	SA equivalent test
Workability (Gyratory compactor)	Max 6% voids after 100 gyrations	5.7 %	Gyratory
Durability (Duriez test)	Retained strength: >0.7	0.9	Modified Lottmann
Rutting (Wheel tracker)	Rut depth after 30 000 cycles <7.5 mm	5.2 mm	RSST-CH, Wheel tracking
Beam dynamic modulus	15 °C-10 Hz: >14 GPa	17 GPa	Beam or cylinder dynamic modulus
Fatigue (Prism)	με for 10 ⁶ fatigue life: >130	90 με	Beam fatigue

Binder specifications

Property	Result	Test method	Specification			
Penetration @ 25□, 10 ⁻¹ mm	25 ± 1	ASTM D5	(20-30) (15-25)			
Softening point, R&B, °C	62.8	ASTM D36	(55-63) (55-71)			
Dynamic Viscosity @ 60°C, Pas	2713.0	ASTM D4402	(≥550)			
Mass change, % (m/m)	±0.061	ASTM D2872	(±0.5) (≤0.5)			
Softening point, R&B, °C Increase	69.2 6.4	ASTM D36	(≥57) (≥ Orig. Min +2)			
Penetration @ 25□, 10 ⁻¹ mm % Original	76	ASTM D5	(≥55) (≥55)			

Mixing temperature

Binder	Mixing Temperature	TMH1 C2 Recommen ded viscosity	Temperat ure at the viscosity	Mixing Temperatu re Used	
HiMA binder	Lower Mixing Temperature	190cSt	172°C	175°C	
	Upper Mixing Temperature	150cSt	177°C		

Mix improvement

- Develop mix that fulfils the requirements for:
 - Workability,
 - Durability,
 - Resistance against permanent deformation,
 - Rutting,
 - Dynamic modulus,
 - Fatigue.

Slide 17

- Use French mix design as benchmark
- Current challenge: Increase VMA to allow more binder and increased fatigue life

© CSIR 2006 www.csir.co.za our future through science

Mix improvement

Structural design

- Short term: Use French philosophy i.e. design such that strains in pavement remain below threshold.
- Medium term: Develop shift functions from APT trials.

Way forward:

- Improve mix design
- Complete preliminary mix design and structural design guideline,
- Perform APT and LTPP,
- Finalize mix design and structural design guidelines

Thank you

