UTCRCP – Recent experience RPF Feedback

Riaan Burger PD Naidoo & Associates (PDNA/UWP JV) 11 November 2009

Contents

- Background
- Mix Design
- Construction
- Lessons Learnt

Background

- UTCRCP = Ultra Thin Continuous Reinforced Concrete Pavement
 - 50 mm thick concrete pavement
 - Concrete strength:
 - 90 MPa minimum Compressive (cubes)
 - 10 MPa minimum Flexural (beams)
 - 700 Joule Flexural Toughness (circular panels)
 - 5.6 mm mesh (50 x 100 mm) approximately 6% steel
 - 100 kg steel fibre per cube
 - Polypropylene fibre (2 kg)
- Contract: N1/1 Rehabilitation & Widening (NRA Noo1-010-2008/2)
 - Between Toll Gate and Huguenot Tunnel (Short section on Worcester side)

Background continued

- Initial specifications provided by SANRAL (Louw Kannemeyer)
- These included
 - Project Specification (Section B7700)
 - Details (joints, anchor beams, etc.)
- Included in project specification are details of the concrete mix
 - Details on
 - Strength requirements
 - Mix proportions
 - These details guided the mix design process

• Mix proportions provided in project specification

Material	(kg/m³)
Cement	480
Fly Ash	87
Condensed Silika Fume	72
Stone	972
Water	175
Sand 1	257
Sand 2	257
Sand 3	170
Chryso Premia 100* (litre)	4 /
Chryso Optima 100* (litre)	2.4 /
Polypropylene Fibre	2
Steel Fibre	100

- Indication from different sources was to not change this
- Rather, local materials had to be sourced, conforming to specifications
 - Sand (Phase 1)
 - Stone (Phase 2)

- Phase 1 mixes used the same coarse aggregate (Hornfels)
- Varied sand sources (3) & W/C ratios (3)
- Varied sand sources and Water/Cement ratios
- Obtained promising results with Consol sands at 0.3 W/C ratio
 - Consol Unscreened Millfeed @ 76% + 1.2-2.4 Sand @ 24%
 - Strengths
 - Compressive: 80.65 MPa (90.67 average)
 - Flexural: 10.65 MPa (12.27 average)

- Phase 2 varied the stone (6.7 mm aggregate)
 - Granite
 - Flakiness: 8.2 %
 - ALD: 4.8 mm
 - Hornfels
 - Flakiness: 30.2
 - ALD: 3.4
- Granite gave best results
 - Compressive strength
 - Flexural strength
 - Flexural toughness (circular panels, energy absorption)

Days

- Circular Panels
 - Requirement is 700 Joules energy absorption at 25 mm deflection
 - Granite: 6 out of 6 panels
 - Hornfels: 3 out of 6 panels

Mix Design – Trial Sections

- Purpose is to develop Method Statement and to test construction procedures with selected mix
 - With Trial Sections pre-mixed dry components were used for the first time
 - Silica Fume, Fly Ash, part of Cement and Polypropylene
 - Compressive strength results much higher than trial mixes
 - Average compressive strengths exceed 90 Mpa
 - Laboratory mix made achieved 108 MPa

- Curing
 - Wax based curing compound better performance indicated
 - Also plastic sheeting for 7 days
- Day Joint
 - Insert within mesh; no lapping of mesh through joint
 - Plane of weakness problem position at Heidelberg TCC
- Texturing
 - 26 mm random spacing tine grooving device; at 60° angle
- Asphalt joint
 - Wooden joint former; apply compound to prevent asphalt adhesion

- To date, we have 4 instances where reduced payment may be applicable
 - Judgment scheme considers both strength (f) and thickness (d)

$$P = \frac{(dw)^{5}(fw)^{4}}{(ds)^{5}(fs)^{4}} \times 100$$

No outright rejection (fw < 82.35 MPa; dw < 46.55 mm)

UTCRC Strengths

- Achieving approximately 50 linear meters per day
- Texture
 - Specification requires 1 2 mm texture depth (minimum) TMH6
 - This is achieved (different measurements)

• Timing of tine grooving is very important

Steel fixing

Vibration pattern

• "Paving train"

Asphalt joint

Asphalt joint

Lessons learnt

- Stick to the "recipe"
 - Sand grading is extremely important
 - Also moisture
 - Stone as cubic as possible (Spec on ALD and Flakiness?)
- Define early strength requirement for acceptance control
 - Rapid curing/1 day/3 day/7 day strengths?
- Indication that pre-mixing of dry components also improves strength development; also mixing method
 - Pan mixer size & energy
- Work as a team
 - Client/Consultant/Contractor
- Ask questions get as much information as possible
- Attention to detail, e.g. sample preparation

Attention to detail

Attention to detail

Thanks for sharing your knowledge

- Louw Kannemeyer
- Prof Kearsley & D Mostert (UP)
- Prof van Zijl (US)
- Prof Alexander (UCT)
- Kevin Pickard
- Johan Dercksen

