

South African Pavement Design Method (SAPDM)

Post Calibration of Weigh-in-Motion Measurements for Systematic and Random Deviation

Dr SC van As

WIM Adjustment for Systematic Deviation

Available Calibration Methods

- On-site calibration of WIM equipment
- Automatic self-calibration
- Post-processing calibration
- Why post-processing calibration?
 - Difficult to undertake full-scale on-site calibration
 - WIM calibration tends to "drift" over time

Development of method

- Developed by BKS Dr Martin Slavik and Mr Gerhard de Wet
- With support by Dr Christo van As

WIM Adjustment for Systematic Deviation

Alternative post-processing methods

- (FA) Front-axle method
 - Inadequate data to calibrate
 - Problem with load transfer to front axle
- (TT) Truck-tractor method
 - Less sensitive than the Front-Axle method for load transfer
 - TT method now recommended for general application
- Other methods
 - Various methods were extensively tested
 - TT method found to provide best results

WIM Systematic Deviation Adjustment– TT Method

TT method – Truck selection

- 6-7 Axle articulated heavy vehicles (double rear axles on tractor)
- Average "calibrated" axle load 6.5 to 8.5 tons per axle

TT method – Calibrated

Calibrate for target tractor load of 21.8 ton

TT method – Conditions

- Calibration factor within limits (0.8 to 1.2)
- Front axle load standard deviation within limits
- Tractor load standard deviation within limits

6

💐 WIM Time-Span Exclusions

File View Graph Tools Help

Ready

- 7 🛛

Axle load distribution

- WIM Random errors and variation in dynamic loads result in:
 - Measured axle distribution wider than actual static load distribution
 - Particularly at higher end of distribution
 - Results in overestimation of percentage "overloaded" axles

Basic adjustment methodology

- Observed axle load measurements is the sum of
 - Static load of the axle plus
 - WIM error and dynamic impact
- If information on WIM error and dynamic impact is known
 - Then such impact can be "subtracted" from observed axle loads
 - To provide the static load of the axle

- Mixed Log-Normal Distribution methodology
 - This methodology was first tested and applied
 - Fitted Mixed Log-Normal distribution to observed axle loads
 - WIM error/dynamic deviation also follows a Log-Normal distribution
 - Statistics to adjust observed distributions for error based on:
 - Central Limit Theorem
- Issue with method
 - Method statistical sound, but difficult to apply
 - Iterative algorithm required for fitting Mixed Log-Normal Distribution
 - "Expectation-Maximization" (EM) algorithm
 - Disadvantage of algorithm is that a good initial solution is required
 - Required a significant manual input

- "Expectation-Maximization-Smoothing" (EMS) algorithm
 - Applies a numeric technique using so-called "deconvolution" method
 - Wim errors basically "convolutes" or distorts the static load
 - Deconvolution removes this convolution from data
 - Central limit theorem is a special case
 - Numeric method does not require fitting of Log-Normal distributions
 - Can also be solved by means of Expectation-Maximization
 - Problem is that deconvolution is very sensitive to "noise" in data
 - Can only be used when data relatively free of noise
 - This problem is solved by incorporation of smoothing algorithm
 - Smoothing intended to remove noise from data

