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ME-design model for unbound
material

Components

Resilient response - SAPDM/B-1a
Resilient modulus (stiffness)
Poisson’s ratio

Yield strength or shear strength - SAPDM/D-2
Damage model - SAPDM/D-2
Permanent deformation - plastic strain

Preliminary model development based on

avallable data
P C
m




ME-design model for unbound
material

Models complicated

Relate model parameters to basic
engineering parameters

Grading

Atterberg indicators

Density

Moisture content (saturation)

Hide complexity behind engineering
Interface




Project SAPDM/B-1a
Resilient response modelling for
unbound material
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Planned tasks — SAPDM/B-1a

Task

[4(a)]

Activity Deliverable
number
Density, saturation and stress- |Refine model formulation (a)| B-1a/1(a)
dependent resilient modulus Models for realistic density
(chord modulus) models for estimates (b) B-1a/1(b)
unbound granular material (1) .
Validation of SA model B-1a/1(c)
moisture sensitivity (c)
Density, saturation and stress- |Model formulation and
dependent tangent modulus calibration (a) B-1a/1(b)
models for unbound granular
material (2)
Predictive resilient modulus models for unbound granular
material and material modelling related to project SAMDM/B-2| B-1a/4(a)




Resilient modulus model
refinement

Objectives

Rectify model formulation and include significant
variables

Ensure model satisfies statistical requirements for
regression

Explore development of predictive model for
design

Provide guidance on additional work

P,
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Uzan Mr-model

Problems

Does not include
density and saturation

Does not satisfy
statistical
requirements
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¥a1 1st alternative: SR-model for

.\\
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¥Z\ Design model: SR-model for
. combined materials

Stress ratio model

Problems i

1500 |

Model over estimates 0
stiffness at low
saturation
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2nd glternative: NLSR-model or
Theyse Mr model
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Nonlinear stress ratio model
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Calibration - extreme caution

Model for all materials combined

Explains inter-material variation but not intra-material
variation

Crushed stone
Single model calibrated without material bias

Crushed gravel
Calibrated for one material

Natural gravel
No single saturation-stiffness relationship

P,
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Aspects of design application

Model formulated in terms of effective
stress - suction pressure estimates required

SAPDM/D-2 predictive models available

Accurate yield strength estimates required
SAPDM/D-2

Formulation appears complicated but model

reduces to stress-stiffening, stress-softening

model for given density and saturation
levels

exp| d(S—s)]+1 \‘
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¥4l Aspects of design application
(continued)

Density and saturation terms included in pre-
processing

Stress-dependent terms require feedback from
continuum mechanics model and an iterative

solution
ELSYMS becomes a bit more complicated, more like
ELSYM50
Implementation in primary pavement response
model (SAPDM/C-3)

Stress-dependent Poisson’s ratio model, Bonaquist and

Witczak (1997) C
r,

NLSR resilient modulus model




Focus on moisture sensitivity of natural
gravel material, test at

10 % saturation

20 - 25 % saturation

35 - 40 % saturation

80 % saturation

Test additional crushed gravel material

Assess prediction accuracy
data other than calibration data set C

o




Project SAPDM/D-2
Damage modelling for unbound
material
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Planned tasks

recursive analysis (b)

" [Task Activity Deliverable
: number
~ |Permanent Process W-Cape HVS data (a)
deformation damage - D-2/1(b)
| J€ |calibrate S-N subgrade PD model (b)
models for pavement Calibrat " del f .
U subgrades (1) alibrate continuous model for recursive D-2/1(c)
.. analysis (c)
= Yield strength models|Assess NCHRP SWCC predictive model
D-2/2(a)
for unbound granular |(a)
material (2) SWCC predictive model for SA material
D-2/2(b)
(b)
Calibrate predictive yield strength model| 5 ,, /2(c)
(c)
Plastic strain damage |Calibrate S-N type PS model for natural
D-2/3(a)
models for unbound |gravel (a)
material (3) : :
Calibrate continuous PS model for D-2/3(b)
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»=1 Yield strength of unbound
material

All aspects of unbound material behaviour affected by
yield strength

Resilient modulus and Poisson’s ratio affected by stress ratio
Yield strength in stress ratio

Plastic strain related to stress ratio
yield strength in stress ratio
Suction pressure affects
Effective stress
Yield strength




Yield strength of partially saturated,
unbound granular material
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Yield strength of partially saturated,
unbound granular material

Deviator stress (kPa)
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Yield strength of partially saturated,
unbound granular material
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Yield strength of partially saturated,
unbound granular material
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Yield strength of partially saturated,
unbound granular material
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- STEP 1: Suction pressure model

Objective
Explore the development of predictive SWCCs for
SA unbound materials

SWCC — Matric suction — suction pressure
Options
NCHRP 1-37a

Heath
Theyse
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Suction pressure, matric suction,
SWCC?

matric suction=(u, —u,,)

Matric suction

Measure of how easy
It is to expel water
from material

SWCC

Relationship between
matric suction and
saturation
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¥ Soil-water characteristic curve —
pressure plate equipment

Burette

Air pressure
supply Surcharge weight

Soil specimen

|
Ceramic disk t //
\\\\ Water compartment j
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Soll-Water characteristic curve

N
\! De-saturation zone
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effect zone E\ transition /j transition

Residual zone of
de-saturation
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Matric suction and effective stress

N Bishop
N Suction pressure = Bishop parameter X matric suction
Heath

Suction pressure = Saturation x matric suction
Psuc = S (ua - uw)

Internal
stress

Soil suction
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Saturation

Non-plastic material

|
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Option 2: Heath SWCC from
suction pressure model

Degree of Saturation
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Option 3: Theyse SWCC from
suction pressure model

Degree of saturation

Soil-water characteristic curve
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pSUC =

Slope parameter,
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¥ How does the predictive P, model
affect ability to model yield strength?

Yield Stress Plot
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STEP 2: General yield strength
model

Objective

Explore the relationship between engineering
parameters and yield strength model coefficients

Develop a general (predictive) yield strength
model
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.l General yield strength model

LL - b Relationship
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1 General yield strength model —
calibration data
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Natural gravel

Crushed stone
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» - General yield strength model —
validation data

Natural gravel
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General yield strength model —
application
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Closure

Resilient response modelling

Correlation between independent variables
eliminated

Density and saturation introduced in model
Highly significant variables

Single model for crushed stone
Use for design

Moisture content is the primary independent
variable for natural gravel

Further testing required to relate effect of MC to
engineering parameters

P,
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Closure

Yield strength

Suction pressure and effective stress introduced in
model

General predictive model developed
Grading modulus and -0.075 mm fraction
LL and BLS
Replace Cand ¢ table in current SAMDM
Seasonal MC variation
Construction related spatial density variation
Primary independent variables
Density
Saturation
Confinement

P,
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