

Revision of the Flexible Pavement Design Method Phase 3

Industry feedback – 17th RPF 14 May 2009

H L Theyse

ME-design model for unbound material

- Components
 - Resilient response SAPDM/B-1a
 - Resilient modulus (stiffness)
 - Poisson's ratio
 - Yield strength or shear strength SAPDM/D-2
 - Damage model SAPDM/D-2
 - Permanent deformation plastic strain
- Preliminary model development based on available data

ME-design model for unbound material

- Models complicated
- Relate model parameters to basic engineering parameters
 - Grading
 - Atterberg indicators
 - Density
 - Moisture content (saturation)
- Hide complexity behind engineering interface

Project SAPDM/B-1a Resilient response modelling for unbound material

Planned tasks - SAPDM/B-1a

	Task	Activity	Deliverable number	
	Density, saturation and stress- dependent resilient modulus (chord modulus) models for unbound granular material (1)	Refine model formulation (a)	B-1a/1(a)	
		Models for realistic density estimates (b)	B-1a/1(b)	
		Validation of SA model moisture sensitivity (c)	B-1a/1(c)	
	Density, saturation and stress- dependent tangent modulus models for unbound granular material (2)	Model formulation and calibration (a)	B-1a/1(b)	
	Predictive resilient modulus mode material and material modelling resilient [4(a)]	B-1a/4(a)		

Resilient modulus model refinement

Objectives

- Rectify model formulation and include significant variables
- Ensure model satisfies statistical requirements for regression
- Explore development of predictive model for design
- Provide guidance on additional work

Current model: Uzan

$$M_r = p_{atm} 10^{K_0} \left(\frac{\theta'}{p_{atm}}\right)^{K_1} \left(\frac{\sigma_d}{p_{atm}}\right)^{K_2}$$

Problems

- Does not include density and saturation
- Does not satisfy statistical requirements

1st alternative: SR-model for individual materials

Design model: SR-model for combined materials

Problems

 Model over estimates stiffness at low saturation

2nd alternative: NLSR-model or Theyse Mr model

$$M_{r} = p_{atm} K_{0} V D^{K_{VD}} \left\{ \frac{\exp\left[d\left(S-s\right)\right]+1}{\frac{1}{b} + \frac{1}{a} \exp\left[d\left(S-s\right)\right]} \right\} \left(\frac{\sigma_{3}'}{p_{atm}}\right)^{K_{C}} \left(\frac{\sigma_{1}'}{\sigma_{1}'}\right)^{K_{SR}}$$

Aspects of model calibration

- Calibration extreme caution
 - Model for all materials combined
 - Explains inter-material variation but not intra-material variation
 - Crushed stone
 - Single model calibrated without material bias
 - Crushed gravel
 - Calibrated for one material
 - Natural gravel
 - No single saturation-stiffness relationship

Aspects of design application

- Model formulated in terms of effective stress - suction pressure estimates required
 - SAPDM/D-2 predictive models available
- Accurate yield strength estimates required
 - SAPDM/D-2
- Formulation appears complicated but model reduces to stress-stiffening, stress-softening model for given density and saturation levels

$$M_{r} = p_{atm} K_{0} V D^{K_{VD}} \left\{ \frac{\exp\left[d\left(S-s\right)\right]+1}{\frac{1}{b} + \frac{1}{a} \exp\left[d\left(S-s\right)\right]} \left(\frac{\sigma_{3}'}{p_{atm}}\right)^{K_{C}} \left(\frac{\sigma_{1}'}{\sigma_{1}'}\right)^{K_{SR}} \right\}$$

Aspects of design application (continued)

- Density and saturation terms included in preprocessing
- Stress-dependent terms require feedback from continuum mechanics model and an iterative solution
 - ELSYM5 becomes a bit more complicated, more like ELSYM50
- Implementation in primary pavement response model (SAPDM/C-3)
 - Stress-dependent Poisson's ratio model, Bonaquist and Witczak (1997)
 - NLSR resilient modulus model

Future work under project B-1a

- Focus on moisture sensitivity of natural gravel material, test at
 - 10 % saturation
 - 20 25 % saturation
 - 35 40 % saturation
 - 80 % saturation
- Test additional crushed gravel material
- Assess prediction accuracy
 - data other than calibration data set

Project SAPDM/D-2 Damage modelling for unbound material

Planned tasks

Task		Activity	Deliverable number
	Permanent deformation damage models for pavement subgrades (1)	Process W-Cape HVS data (a)	D-2/1(b)
		Calibrate S-N subgrade PD model (b)	
		Calibrate continuous model for recursive analysis (c)	D-2/1(c)
100	ield strength models or unbound granular naterial (2)	Assess NCHRP SWCC predictive model (a)	D-2/2(a)
materi		SWCC predictive model for SA material (b)	D-2/2(b)
		Calibrate predictive yield strength model (c)	D-2/2(c)
	aterial (3)	Calibrate S-N type PS model for natural gravel (a)	D-2/3(a)
materi		Calibrate continuous PS model for recursive analysis (b)	D-2/3(b)

Yield strength of unbound material

- All aspects of unbound material behaviour affected by yield strength
 - Resilient modulus and Poisson's ratio affected by stress ratio
 - Yield strength in stress ratio
 - Plastic strain related to stress ratio
 - yield strength in stress ratio
- Suction pressure affects
 - Effective stress
 - Yield strength

$$\sigma_{1}^{y} = \frac{e^{aVD}}{e^{bS}} \left(\sigma_{3} + p_{suc}\right)^{c} - p_{suc}$$

$$= \frac{e^{aVD}}{e^{bS}} \left(\sigma_{3} + \frac{\rho S}{e^{VD}}\right)^{c} - \frac{\rho S}{e^{VD}}$$
Yield Strength Model with Suction Pressure Shale base (P10-2)

Yield Stress Plot

Pure shear

Pure shear

Pure $\frac{\rho S}{e^{aND}}$

Pure $\frac{\rho S}{e^{aND}}$

Pure $\frac{\rho S}{e^{aND}}$

Pure $\frac{\rho S}{e^{aND}}$

The pure $\frac{\rho S}{e^{aND}}$

STEP 1: Suction pressure model

- Objective
 - Explore the development of predictive SWCCs for SA unbound materials
 - SWCC → Matric suction → suction pressure
 - Options
 - NCHRP 1-37a
 - Heath
 - Theyse

Suction pressure, matric suction, SWCC?

$$matric\ suction = (u_a - u_w)$$

Matric suction

 Measure of how easy it is to expel water from material

SWCC

 Relationship between matric suction and saturation

Soil-water characteristic curve – pressure plate equipment

Soil-Water characteristic curve

Matric suction and effective stress

- Bishop
 - Suction pressure = Bishop parameter x matric suction
- Heath
 - Suction pressure ≅ Saturation x matric suction

$$p_{suc} = S\left(u_a - u_w\right)$$

Internal stress

Soil suction

Option 1: NCHRP 1-37a SWCCs

Option 2: Heath SWCC from suction pressure model

Option 3: Theyse SWCC from suction pressure model

Heath - Theyse comparison

Sand-calcrete mixture

Predictive model development

$$p_{suc} = \frac{\rho S}{e^{\omega S/VD}}$$

How does the predictive P_{suc} model affect ability to model yield strength?

STEP 2: General yield strength model

Objective

- Explore the relationship between engineering parameters and yield strength model coefficients
- Develop a general (predictive) yield strength model

General yield strength model

General yield strength model – calibration data

Crushed stone

Natural gravel

General yield strength model – validation data Natural gravel

Crushed stone

General yield strength model – application

Closure

- Resilient response modelling
 - Correlation between independent variables eliminated
 - Density and saturation introduced in model
 - Highly significant variables
 - Single model for crushed stone
 - Use for design
 - Moisture content is the primary independent variable for natural gravel
 - Further testing required to relate effect of MC to engineering parameters

Closure

- Yield strength
 - Suction pressure and effective stress introduced in model
 - General predictive model developed
 - Grading modulus and -0.075 mm fraction
 - LL and BLS
 - Replace C and ϕ table in current SAMDM
 - Seasonal MC variation
 - Construction related spatial density variation
 - Primary independent variables
 - Density
 - Saturation
 - Confinement

