

RPF May 2010: Progress Report on the SAPDM

Damage models for stabilised material

H L Theyse

Current activities

- Preliminary investigation
 - Site visits
- Damage models
 - Initial plastic strain models
 - Yield strength models

Project SAPDM/D-3 Damage modelling of stabilised material

Preliminary investigation site visits

Site selection

N2-24 Amanzimtoti

- Moist sub-humid area
- Structure
 - 138 mm HMA layers
 - 200 mm C2
 - 150 mm C3
- Constructed 1964
- ADT 18 000 to 30 0000
- Cracks with pumping but often on inner wheel-path!

N11-12 Roedtan

- Semi-arid area
- 150 C3 on 150 C4
- Constructed 1961
 - Short section north of Roedtan reconstructed
- Cracks with pumping but often on inner wheel-path!

N17-5 Ermelo - Carolina

- Dry sub-humid area
- 100 C3 on G5 km 0 to 9
 - **1958**
- 100 C3 on 100 C3 km 9 to 25
 - **1968**
- Fatigue and pumping in cut on 1st section, deep rut
- Wide 20 mm rut on second section

N14-5 Upington

- Arid area
- Structure
 - 16 mm seals
 - 100 mm C3
 - 100 mm C4
- Constructed 1935
- ADT 455
- Cracks with pumping but often on inner wheel-path!

N1-1 Kraaifontein

- Dry sub-humid area
- Original CTB pavement
 - Recycled 1984
- Structure
 - 40 mm gap on 40 mm continuous
 - 100 mm ETB (1 % residual)
 - 100 mm CT subbase
- Surfacing milled and replaced
 - _ 1994
 - **2010**

N2-16 East London

- Dry sub-humid area
- Constructed 1980/81
- Structure
 - 40 mm gap
 - 140 mm ETB sandstone (1 % residual, 1 % cement)
 - 150 mm subbase (1.5 % lime,1.5 % slagment)
- Surfacing milled and replaced
 - **1994**
 - **2010**

N2-20 Mount Frere

- Dry sub-humid area
- Constructed 1999/2000
- Structure
 - 35 mm AC
 - 180 mm ETB (1.75 % cement and 1.5 % residual bitumen)
 - 120 mm old C4 base
 - 150 mm old C4 subbase
- ADT = 2300
- Condition
 - Cracks and pumping in vicinity of Mt Frere
 - Better condition towards Mt Ayliff

N4-1 100 mm ETB on old CTB

- Dry sub-humid area
- Original 200 mm C1 CTB pavement
 - Constructed 1969
 - UCS on cores 25 years after construction 13 MPa
- Upper 100 mm recycled with ETB in late 1990s on the slow lane
 - Fast lane still CTB
- High traffic volume
- Block cracks sealed
- No fatigue and pumping

D2388 100 mm ETB on "cemented" subbase

- Dry sub-humid area
- Constructed in 1997
 - 0.9 % residual binder
 - 1 % cement
- Very little traffic
- No structural distress

N7-07 Kammieskroon

- Arid area
- Constructed in 1987
- Structure
 - Seals
 - 150 mm ETB (2 % emulsion, 1 % cement)
 - 50 mm old CT subbase
- Very little traffic
- No structural distress

N11-08 Hendrina

- Moist, sub-humid
- 180 mm foamed bitumen treated dolerite
 - Constructed 2003/04
 - 1.5 % foam
 - 1 % cement
- Localised shear failure
- Rutting on inner wheel-path

P243 Vereeniging

- Dry sub-humid
- 250 FTB
 - Constructed 2000
 - 1.8 % foam
 - 2 % cement
- Localised shear failure
- No structural distress on remainder of section

R27 Nieuwoudtville

- Arid area
 - Appears wetter than Upington and Kammieskroon
- Constructed in 2003
- Structure
 - Double seal
 - 200 mm FTB
 - 2.5 % foam
 - 1 % cement
- Cracking and pumping in inner wheel-track

P504 Cliffdale Road

- Moist sub-humid area
- Constructed in 1995
- Structure
 - Slurry seal
 - 175 mm FTB
 - 3.5 % foam
 - 1 % lime
 - Decomposed granite subbase and in situ
- AC overlay 3 years after construction
- Condition
 - Surface disintegration but little material loss from base
 - Substantial deformation in places

R22 Mseleni

- Semi-arid area
- Constructed in 2002
- Structure
 - Coarse slurry seal
 - 250 mm FTB
 - 4 % foam
 - 2 % lime
 - Sand and calcrete mixture in base
- Double seal 4 years after construction
- About 10 mm rut but overall sound structural condition

Preliminary investigation: Closing comments

- Site visits completed
- Field testing and sampling to start on selected sites
- Emulsion seems to be doing well
 - All sections in arid to dry sub-humid areas
- Cemented section classical block cracks with secondary cracks and pumping
 - Very old sections also in wetter areas
- Foam
 - Appears to have moisture susceptibility in <u>some</u> cases

Project SAPDM/D-3 Damage modelling of stabilised material

Yield strength model

Unbound material yield strength model

Yield Strength Model with Suction Pressure Shale base (P10-2)

$$\sigma_1^y = \frac{e^{aVD}}{e^{bS}} (\sigma_3 + p_{suc})^c - p_{suc} \quad \text{if } \sigma_3 \ge -p_{suc}$$

Unbound material, suction pressure – "apparent" tensile strength

$$p_{suc} = \frac{\rho S}{e^{\delta N/VD}}$$

Stabilised material – true tensile strength

Sand-calcrete mix – 5 % binder, 1 % cement

Effect of bitumen and cement

Tensile strength – beam or ITS?

General yield strength model

- Model calibrated for each combination of aggregate, bitumen and cement individually shows good accuracy
- Complex interaction between aggregate, bitumen and cement difficult to model
 - Routine ITS and UCS tests?
 - No cement no tensile nor compressive strength

Plastic strain damage models: Closing comments

- Initial yield strength models sufficient to start with PS model development
- Memory-less PS model formulation completed based on Markov property of PS evolution
- Model development and calibration require more effort than past approach but the plastic strain damage model will be far more powerful in a recursive application

Additional damage models: Closing comments

- Crushing failure of cement-treated base layers
- Stiffness reduction linked to deflections on field sections
- Material loss/erosion linked to durability testing

