

SA PG Binder Specifications

Road Pavement Forum May 2017 Durban Steph Bredenhann

- Specification framework
 - Unaged binder
 - RTFO aged binder Short-term aged binder (STA)
 - RTFO and PAV aged binder Long-term aged binder (LTA)
- ➢ Research
- > Quality control
- Finger printing
- Implementation plan
- ➤ SA binder production
- Example results

The SA Performance Grade Binder Specification PG58-22

Test Property	Note	South African Performance Grades												
restriopenty		588-22	58H-22	58V-22	58E-22	645-16	64H-16	64V-16	64E-16	705-10	70H-10	70V-10	70E-10	Test Method
Max pavement design temperature (°C)	1.1	58	58	58	58	64	64	64	64	70	70	70	70	
Minimum grading temperature (°C)	1.1	-22	-22	-22	-22	-16	-16	-16	-16	-10	-10	-10	-10	
G* and δ at [(T _{max} + T _{min})/2+4]°C	1.11		Compulsory report only – see detail description of report only item							ASTM D7175				
G*/sinδ @10rad/s (kPa) @ T = T _{max} Report G* and δ separately	1.3		≥ 1.0							ASTM D7175				
Viscosity at 165°C (Pa.s) ≥ 30 sec ⁻¹	1.4		≤ 0.9								ASTM D4402			
Storage Stability at 180°C (% diff in G* at T _{max})	1.5		≤ 10								ASTM D7175			
Flash Point (°C)			≥ 230								ASTM D92b			
	1.6		After RTFO Ageing								ASTM D2872 / TG1 MB3			
G ^x and δ at [(T _{mex} + T _{min})/2+4]°C,	1.11		Compulsory report only – see detail description of report only item								ASTM D7175			
Mass Change (% m/m)		≤ 0.3 ≤ 1.0 ≤ 0.3 ≤ 1.0 ≤ 0.3 ≤ 1.0					ASTM D2872 / TG1 MB3							
Jnr at Tmex (kPa ⁻¹)		≤ 4.5	≤ 2.0	≤ 1.0	≤ 0.5	≤ 4.5	≤ 2.0	≤ 1.0	≤ 0.5	≤ 4.5	≤ 2.0	≤ 1.0	≤ 0.5	ASTM D7405
Ageing ratio [G [*] RTFO / G [*] Original]	1.9	≤ 3.0							ASTM D7175					
		After RTFO plus PAV Ageing								ASTM D6521				
G ^x and δ at [(T _{mex} + T _{min})/2+4]°C,	1.11	Compulsory report only – see detail description of report only item								ASTM D7175				
Maximum creep stiffness tested at temperature														
$(T_{min} + 10^{\circ}C)$, MPa, [S (60s) \leq 300 MPa]		-12 °C				-8 °C			0.5				ASTM D6648	
Minimum m-value tested at temperature (T _{min} + 10°C) , [m (60s) ≥ 0.300]		-12 °C				-6 °C			0 °C					
ΔT_{c} (°C) = T _{c,S} - T _{c,m}	1.8	2-5							ASTM D7643					
Ageing ratio [G*PAV / G*Original]	1.9	≤ 6.0						ASTM D7175						

Climatic Regions – Maximum Temperatures

97.5% percentile 7-day average maximum temperature

Document Path: F./Roadtemp/Warmest road points mod

Climatic Regions – Minimum Temperatures

Traffic Definition

Design traffic (million E80)	Tra	Asphalt mix			
	< 20	20 - 80	>80	design level	
< 0.3	S	S	S	IA	
0.3 - 3	Н	S	S	IB	
> 3 - 10	V	Н	S	т	
> 10 - 30	Е	V	Н	11	
> 30	Е	Е	V	III	

S = standard conditions, H = heavy conditions, V = very heavy conditions, E = extreme conditions

Specification for Unaged Binder

 \succ G*/sinδ ≥ 1.0 at 10 rad/sec and T = T_{max}, report G* and δ separately

- Originally meant for S traffic class only to link to Superpave
- Upon industry request it was included for all binders and traffic classes for QA purposes.
- > Viscosity ≤ 0.9 @ 165 °C and 30 sec⁻¹ for pumpability
- > Storage stability $\leq 10 @ 180 \degree C$ expressed as % diff in G* at T_{max}
 - Determined from top and bottom of tank.
 - Calculate as [G*_{HIGH} G*_{LOW}] / G*_{HIGH} (from top/bottom sample). The G* is measured at T_{high}
- ➢ Flash point for safety ≥ 230 °C, directly from SANS

Specification for RTFO Aged Binder (STA)

> Mass change (% m/m), as per SANS

- \leq 0.3 for S-class
- ≤ 1.0 for all other traffic classes
- \succ J_{NR} @ T = T_{max}
 - ≤ 4.5 for S-class
 - ≤ 2.0 for H-class
 - \leq 1.0 for V-class
 - \leq 0.5 for E-class
- → Ageing ratio $(G_{RTFO}^*/G_{unaged}^*) \le 3$
 - G* and δ measured @ 10 rad/sec
 - Use 8 mm spindle unless G* < 100 kPa, then use 25 mm spindle</p>

Specification for RTFO and PAV Aged Binder (LTA)

> Maximum creep stiffness tested at temperature ($T_{min} + 10 \text{ °C}$)

- S(60 sec) ≤ 300 MPa
- > Minimum m-value tested at temperature (T_{min} + 10 °C)
 - m(60 sec) ≥ 0.3
- $\succ \Delta T_c = T_{c,S} T_{c,m} (^{\circ}C)$
 - Critical temperature for S, $T_{c,S}$ where S(60) = 300 MPa
 - Critical temperature for m, $T_{c,m}$ where m(60) = 0.3
 - \blacksquare T_c values must be obtained through interpolation
- > Ageing ratio $(G_{RTFO+PAV}^*/G_{unaged}^*) \le 6$

- > Tests done at intermediate temperature (IT), $T_{IT} = (T_{max} + T_{min})/2 + 4$
- > Combine with BBR data (converted to G^* and δ)
- > Draw mater curves one isotherm DSR plus BBR (all isotherms)
- Calculate G-R, etc
- Frequencies as per table

Log basis	Linear basis (rad/sec)	Linear basis (Hz)		
-0.6	0.251	0.0400		
-0.4	0.398	0.0634		
-0.2	0.631	0.100		
-0.0	1.00	0.159		
+0.2	1.58	0.252		
+0.4	2.51	0.400		
+0.6	3.98	0.634		
+0.8	6.31	1.00		
+1.0	10.0	1.59		
+1.2	15.8	2.52		
+1.4	25.1	4.00		

> Five (5) Masters students at Stellenbosch University

- Bitumen for asphalt
 - Study ageing characteristics
 - Laboratory
 - From recovered field samples
- Bitumen for surfacing seals (as above)
- Fatigue performance (PG vs 4-pt beam test)
- Storage stability
- Quality control measures
- Needed to fine-tune boundaries

Test frequency

- ≻ TG1 example
- Working on test frequency regime for PG specification
 - Considering PAV (long term ageing)
 - Time constraints

Table 19: Test frequencies for hot polymer modified binders								
Property	Manufacturer	ıfacturer Haulier		Sprayer				
Before ageing								
Softening Point	Every batch	Every load	Every day	Every load				
Elastic recovery @ 15°C	Every batch			Every 5 th load				
Dynamic Viscosity @ 165°C	Every batch			Every 5 th load				
Storage stability @ 160°C1	Every 10 th batch							
Flash Point	Once, at start of project							
After ageing (RTFOT)								
Mass change	Every 10 th batch			Every 10 th load				
Difference in Softening Point	Every 10 th batch			Every 10 th load				
Elastic recovery @ 15°C	Every 10 th batch			Every 10 th load				
Dynamic Viscosity @ 165°C ²	Every 10 th batch							

Site Quality Control and Acceptance

- DSR equipment too expensive for site
 - BUT, newer models (low end) are affordable
 - AND, new viscometers based on DSR
- Still use "conventional" tests
 - Ring & Ball
 - Viscosity
- Research effort during two years of parallel testing to establish norms
- Final decision to be made after two years

- Require assistance from industry
- Data base of all current bitumens produced
 - In terms of PG specification
- Plus additional testing for reference purposes
 - Temperature sweeps for Tg definition
 - Frequency sweeps for full master curves
- Model choice

Implementation Plan

- ➢ Introduction to industry on 25th January 2016
- Workshops to inform industry March 2016
 - 15th in Johannesburg
 - 16th in Cape Town
 - 17th in Durban
 - 18th in Port Elizabeth
- > Bitumen Rheology Masterclass
 - 21-23 June 2016 in Pretoria
 - International experts
 - Followed up April 2017 in Cape Town
- Two-year parallel implementation
 - Include data analyses and research

Final Implementation

Final implementation

Specifications

SANS draft with SABS

