

our future through science

Aspects of: DCP-DN Design Methodology for Low Volume Roads (LVR)

Morris De Beer (CSIR, Built Environment) [Note: Content largely modified from the original (ERA/AfCAP Workshop, 2014) by Pinard and also Page-

Green, both AfCAP Consultants]

Presentation Outline

Background

- Dynamic Cone Penetrometer (DCP) Pavement Design Principles
- DCP Pavement Design Method/Process
- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions

33rd RPF – UMHLANGA, DURBAN: May 9, 2017

Presentation Outline

Background

- Dynamic Cone Penetrometer (DCP) Pavement Design Principles
- DCP Pavement Design Method
- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions

Recap Research for Community Access Partnership Environment vs Traffic Loading

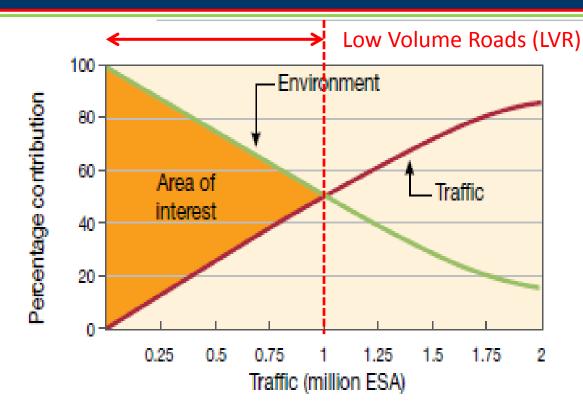
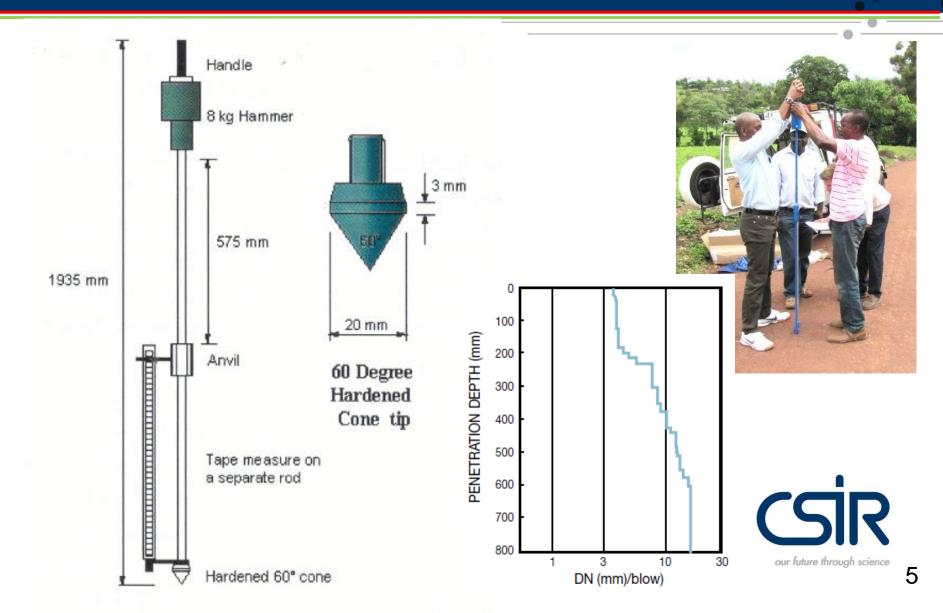
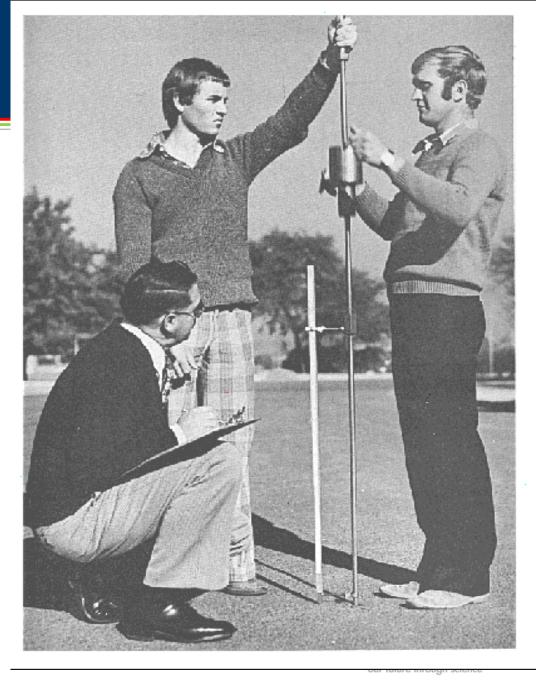


Figure 1-1: Traffic loading versus dominant mechanism of pavement distress (Schematic only)



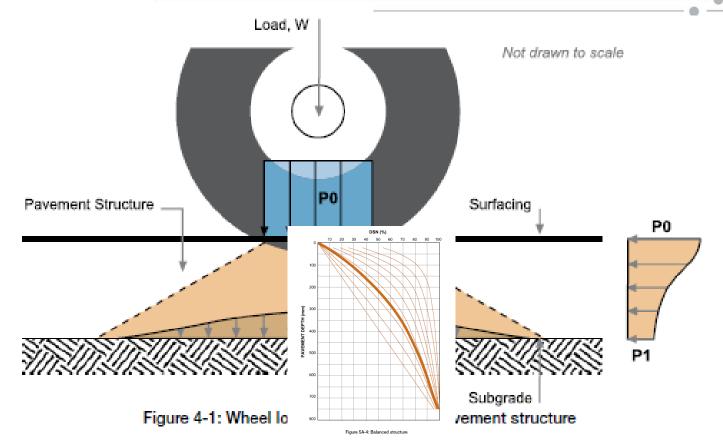
33rd RPF – UMHLANGA, DURBAN: May 9, 2017


Dynamic Cone Penetrometer (DCP)

UKaid

DCP - 1970's South Africa

Dynamic Cone Penetrometer (DCP)



UK 🛍

our future through science

Recaperation France Contracting Curves (TLCs)

33rd RPF - UMHLANGA DURBAN: May 9, 2017

an 🕭 🕸 -

Recap Research for Community Access Partnership Environment vs Traffic Loading

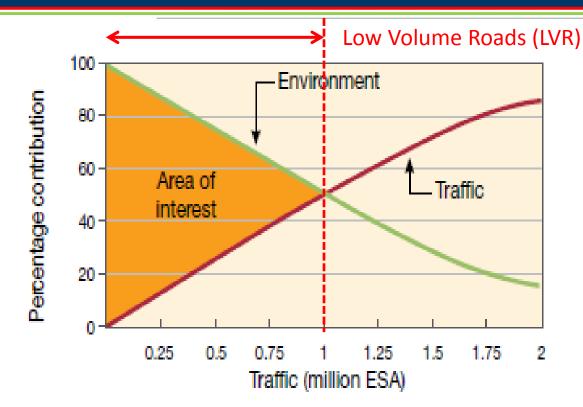


Figure 1-1: Traffic loading versus dominant mechanism of pavement distress (Schematic only)

IJΚ

Environment

UKaid

our future through science

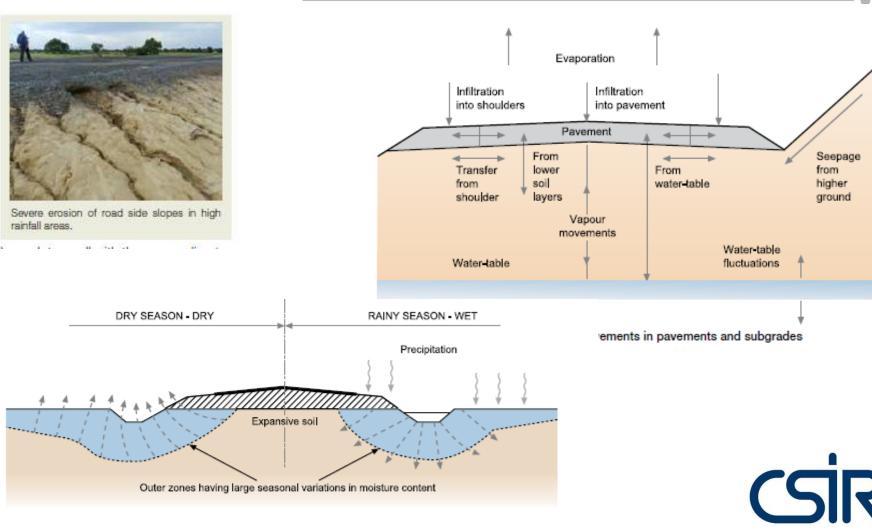


Figure 5-1: Moisture movements in expansive soils under a paved road

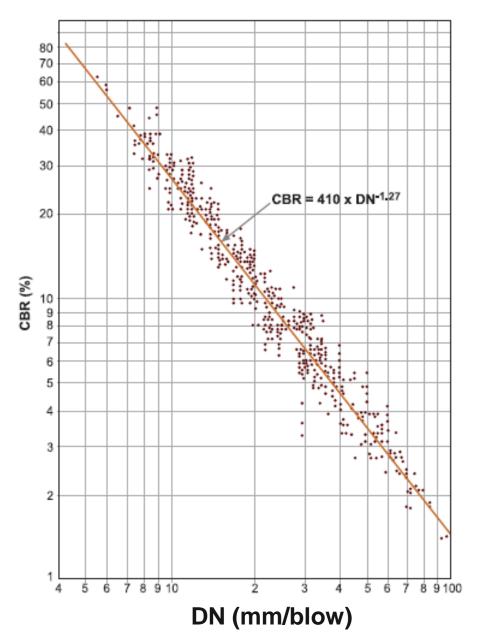
• Current methods both characterise in situ shear strength of existing unpaved road in terms of resistance to penetration (DN value in mm/blow). However:

DCP Design Methods

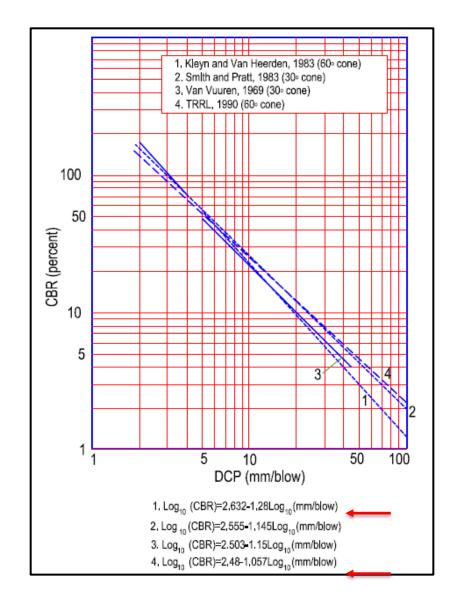
• DCP-CBR method converts DN values to CBR values to derive subgrade class as part of **CBR design catalogue**.

• DCP-DN method uses DN values to derive subgrade class as part of **DN catalogue**.

 Because of issues related to CBR test, focus under AFCAP 1 has been on the DCP-DN design method.



- Developed in 1930's for subgrade soils
- What does it measure?
- Strength or stiffness ?
 - Probably a "mini" plate load test more than shear strength test?
- Repeatability, reproducibility and precision are poor
 - Standard deviation (σ) = 10^w where w = (1.4771-0.9853^{CBR})



Relationship between DN and CBR_Kleyn

CBR-DCP relationship based on 2000+ measurements in South Africa (Kleyn, 1978)

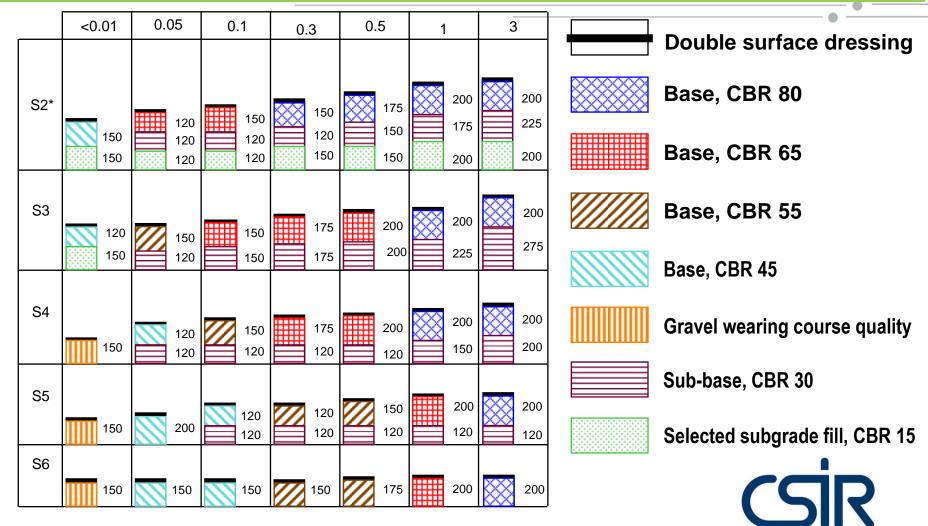
Other relationships between DN and CBR

CBR Issues_ VARIABILITY..!.

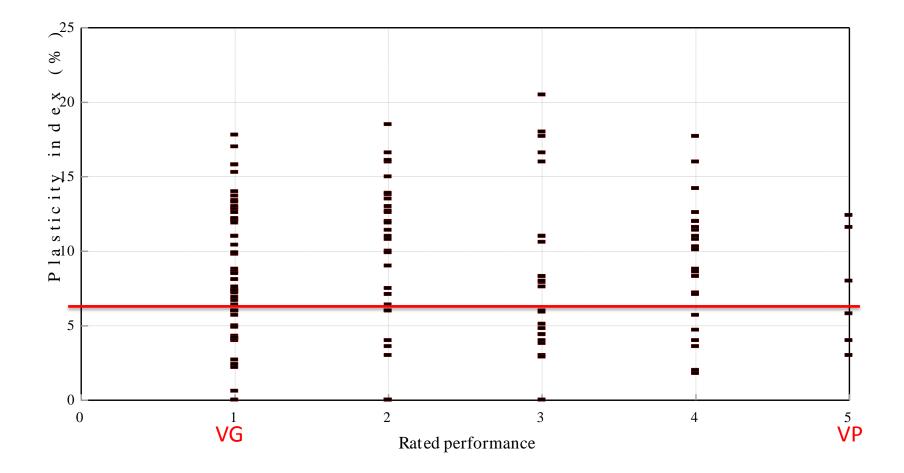
> Poor reproducibility

CBR	σ	95% confidence	Range	
10	4	± 8	2 – 18	
30	7	± 14	16 – 44	
60	12	± 24	36 – 84	
80?	16	± 32	58 – 122	

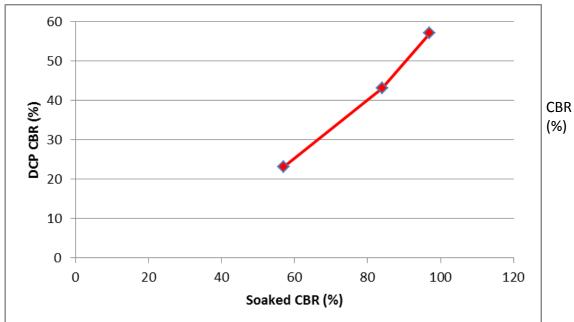
- Empirical test developed in 1928/29. Tried, trusted and understood, but.....
- Test procedure is time consuming, costly and requires large sample for lab testing
- > Often excludes materials that are eminently "fit for purpose"
- When based on soaked condition, irrespective of climate, can be very conservative

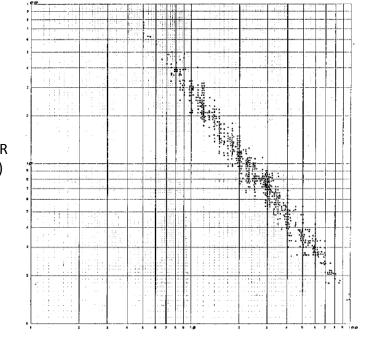


DCP-CBR Based Pavement Design Catalogue


our future through science

Note: * Non-expansive subgrade


What PI is realistic ?- PI – Poor Correlation With Performance



BACKGROUND – CBR VS DCP

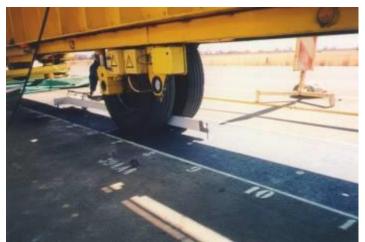
- Correlated with DN
- Actual laboratory result
- Consider mostly DN values in this presentation (remove conversion factors)

DN (mm/bl)

Presentation Outline

Background

- Dynamic Cone Penetrometer (DCP) Pavement Design Principles
- DCP Pavement Design Method
- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions

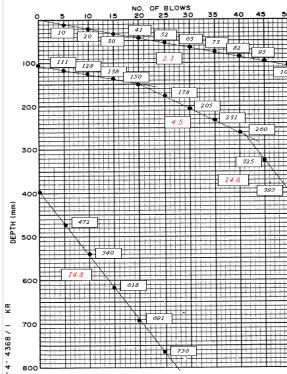


Development of DCP Design Method

- Extensive DCP testing was carried out in conjunction with Heavy Vehicle Simulator (HVS) testing of various roads in SA.
 - Allowed further correlations and developments, e.g. relationships between actual flexible road performance and DCP results, including lightly cementitious base/subbase pavements.

- Make use of beneficial traffic moulding and consolidation of gravel road pavement over many wetting and drying cycles
 - Gravel road pavement should not preferably be disturbed during upgrading
- Optimize utilization of in situ material strength as much as possible. Achieved by:
 - > determining design strength profile required
 - Intergarating required strength profile with in situ strength profile

our future through science



Pavement strength

balance concept

- Successful pavements are structurally well-balanced
- Strength decreases evenly with depth (smooth profiles)
- No strength concentrations in pavement
 = well balanced
- Pavement balance number (BN)

STRUCTURAL NUMBER, OSN (%)

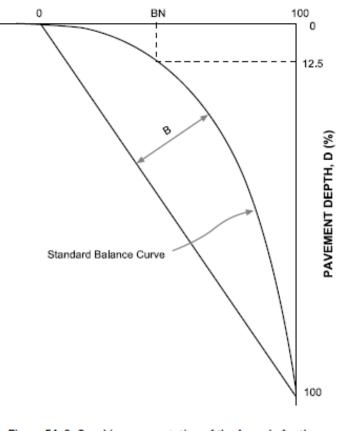


Figure 5A-2: Graphic representation of the formula for the Standard Pavement Balance Curve (SPBC)

our future through science

Recap Research for Community Access Partnership Standard Pavement Balance Curves (SPBC): Curves (SPBC):

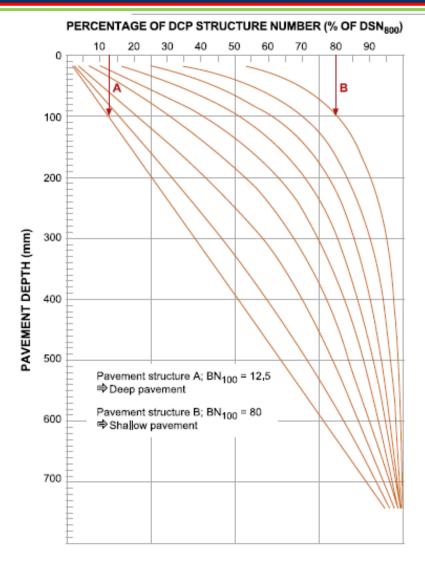
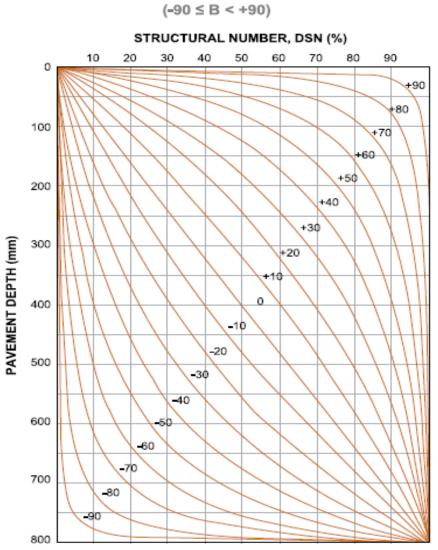



Figure 5A-3: Shows pavement strength-balance curves for typical natural gravel and lightly cemented pavements in the Southern African region.

Recap Research for Community Access Partnership Standard Pavement Balance Curves (SPBC):

STANDARD PAVEMENT BALANCE CURVES (SPBC)

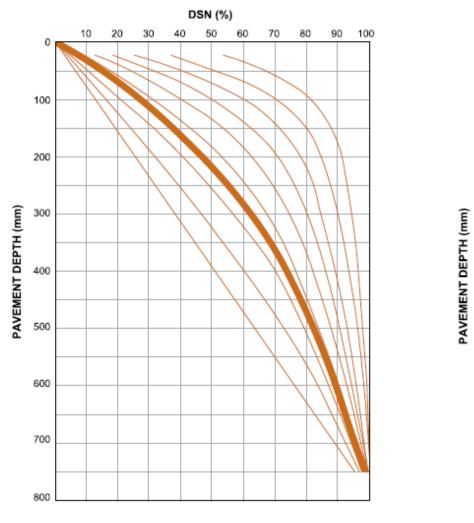

. * *

Figure 5A-1: Standard Pavement Balance Curves

Standard Pavement Balance Curves (SPBC):

.....

Research for Community Access Partnership

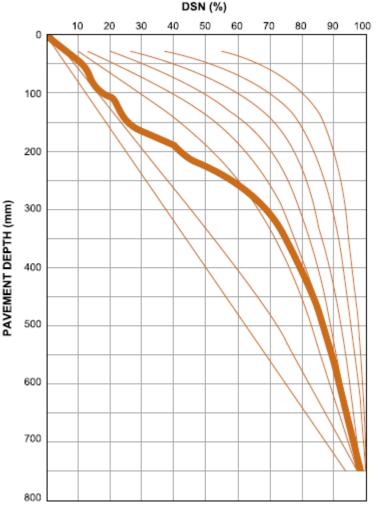
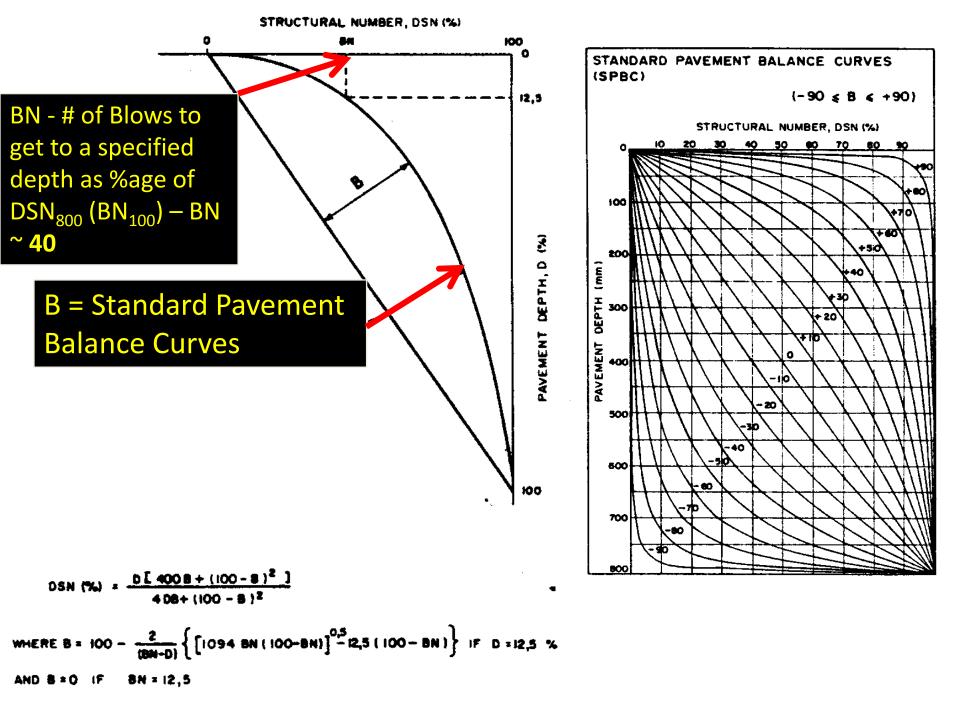
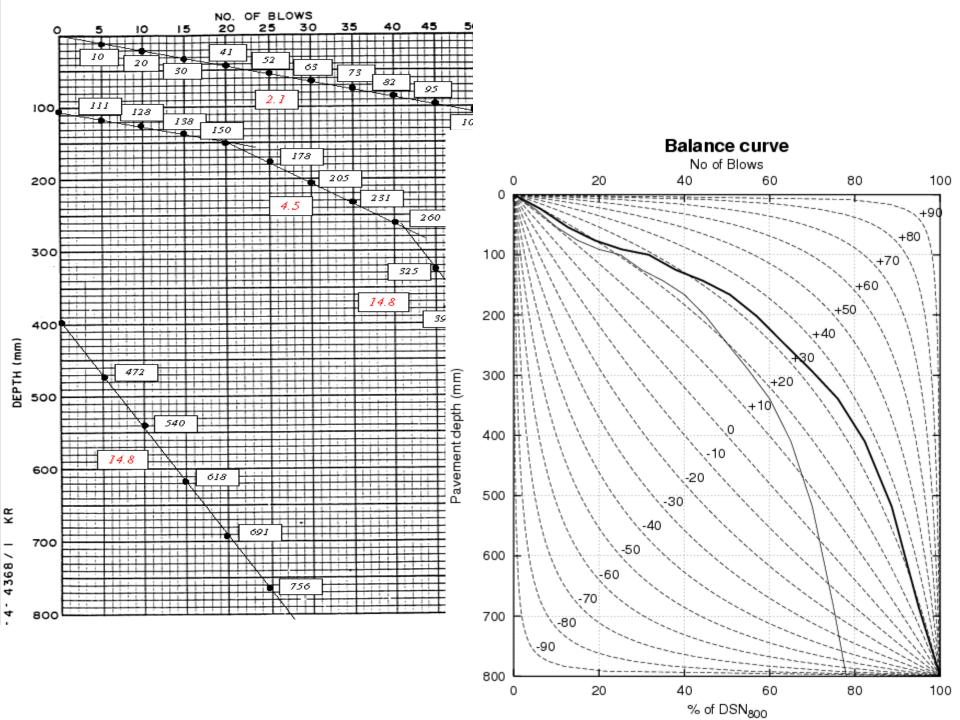
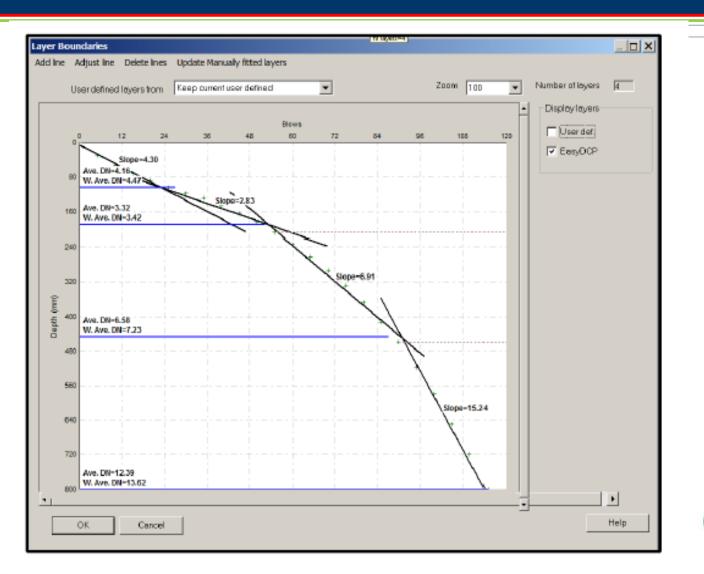
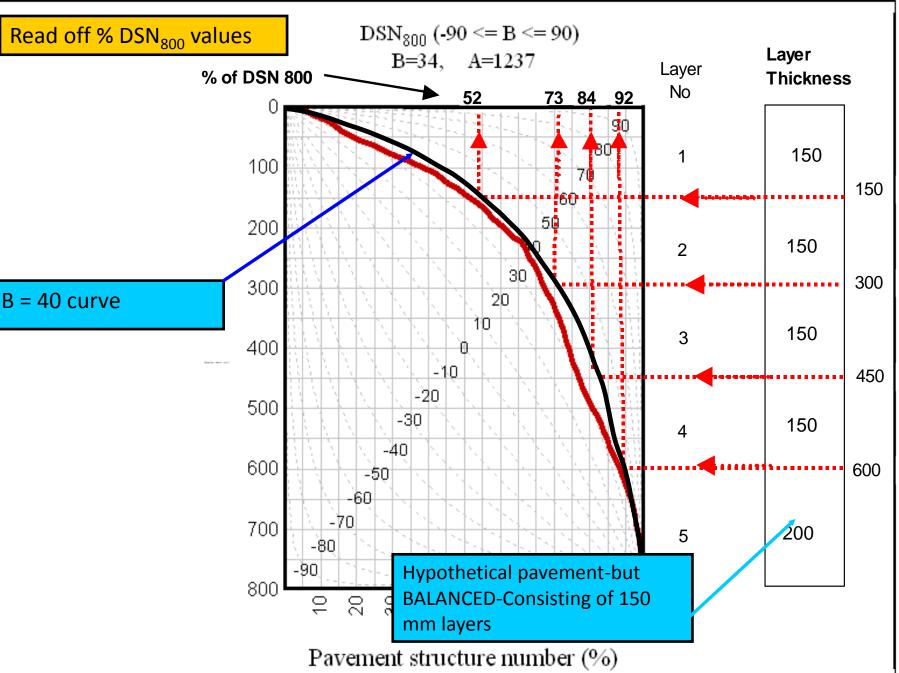




Figure 5A-4: Balanced structure



"Manual" Fitting of layers/sub-layers..



CSIR

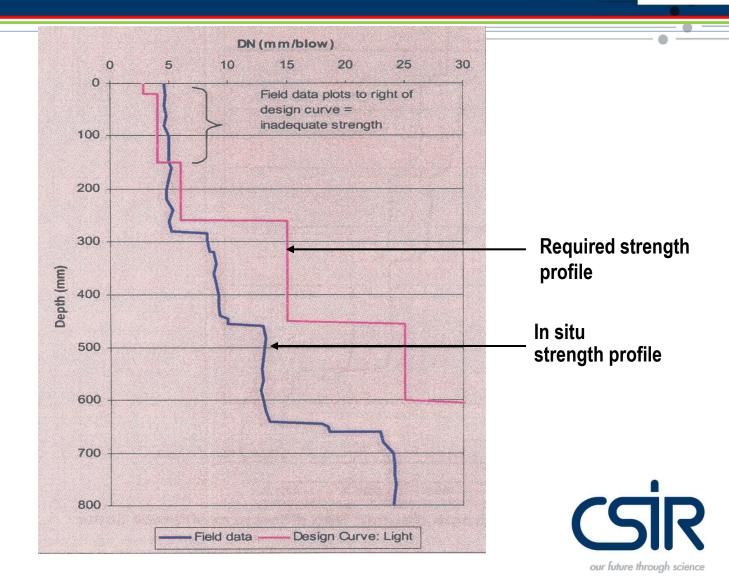

our future through science

Figure 28. Manual layer fitting menu for layer boundaries to be defined. Note: EasyDCP auto re-defined layers also shown here by the broken lines.

Recap Research for Community Access Partnership Integration of In Situ and Required Strength Profiles UKa

33rd RPF - UMHLANGA DURBAN: May 9, 2017

an 🕭 🕸 .

6 x Traffic Loading Curves (TLC)

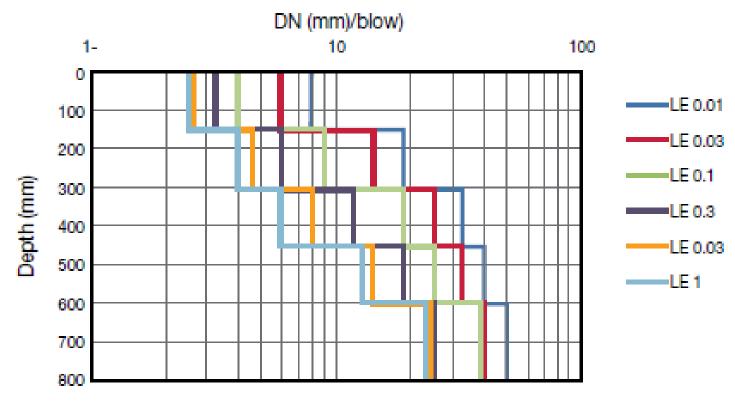
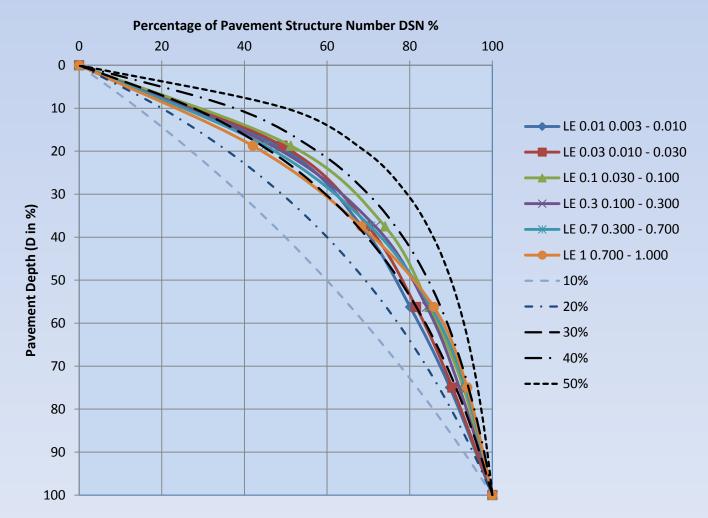



Figure 5-7: Layer Strength Diagram for various traffic classes

6 x Traffic Loading Curves (TLC) and structural balance..

*DCP DN Design Catalogue"-based on TLCs

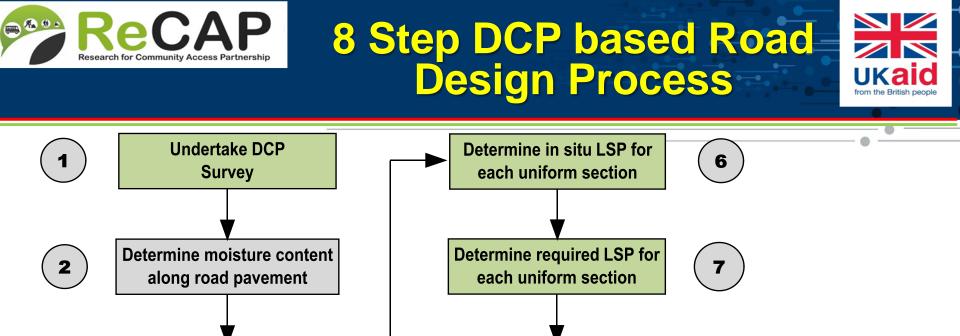
Traffic Load Class	TLC 0.01	TLC 0.03	TLC 0.1	TLC 0.3	TLC 0.7	TLC 1.0
(TLC)	0.003 - 0.010	0.010 - 0.030	0.030 - 0.100	0.100 - 0.300	0.300-0.700	0.700 – 1.0
E80 x 10 ⁶						
0- 150mm Base ≥ 98% MAASHTO	DN ≤ 8	DN ≤ 5.9	DN ≤ 4	DN ≤ 3.2	DN ≤ 2.6	DN ≤ 2.5
150-300 mm Subbase ≥ 95% MAASHTO	DN ≤ 19	DN ≤ 14	DN ≤ 9	DN ≤ 6	DN ≤ 4.6	DN ≤ 4.0
300-450 mm Subgrade ≥ 95% MAASHTO	DN ≤ 33	DN ≤ 25	DN ≤ 19	DN ≤ 12	DN ≤ 8	DN ≤ 6
450-600 mm In situ material	DN ≤ 40	DN ≤ 33	DN ≤ 25	DN ≤ 19	DN ≤ 14	DN ≤ 13
600-800 mm In situ material	DN ≤ 50	DN ≤ 40	DN ≤ 39	DN ≤ 25	DN ≤ 24	DN ≤ 23
DSN ₈₀₀ (Blows)	≥ 39	≥ 52	≥73	≥ 100	≥ 128	\geq 143

{Experience largely based on LVR R&D, Page-Green, et. al.} 33rd RPF - UMHLANGA DURBAN: May 9, 2017 our future through science

Presentation Outline

Background

- Dynamic Cone Penetrometer (DCP) Pavement Design Principles
- DCP Pavement Design Method/Process
- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions



 An alternative method of structural design that avoids the use of the *empirical* CBR test to classify and quantify the strength of materials.

DCP Method of Design

- It uses the DN number obtained directly from DCP measurements *without* converting to CBR.
- It is becoming popular because of its simplicity.
- It is especially useful for upgrading an existing gravel road to a paved (metalled) standard

Determine upgrading

requirements for each

uniform section

8

our future through science

Determine DN values in

pavement layers of entire

road (from DCP programme

Determine uniform sections

(CUSUM analysis)

Adjust DN values for design

moisture content

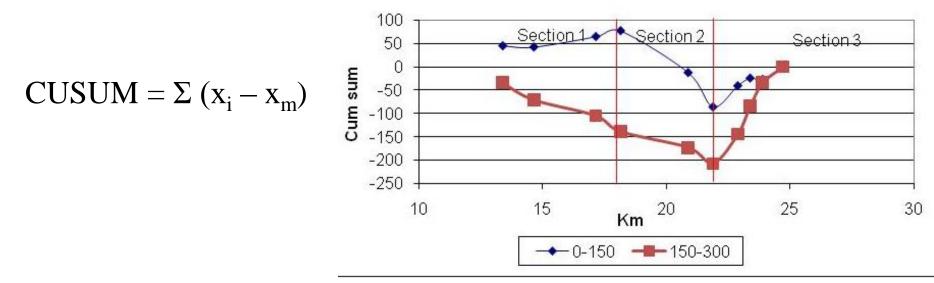
3

4

5

DCP Test Frequency..

Road condition	Frequency of testing/km*
Uniform (low risk)	5
Non-uniform (medium risk)	10
Low-lying/distressed (high risk)	20



EXISTING (IN SITU) ROAD CONDITIONS

Firstly identify uniform sections

- Carry out DCP survey
- Use cumulative sum (CUSUM) technique to identify uniform sections
- Use for actual data (by depth) any percentile (P)
- Don't have too many short sections

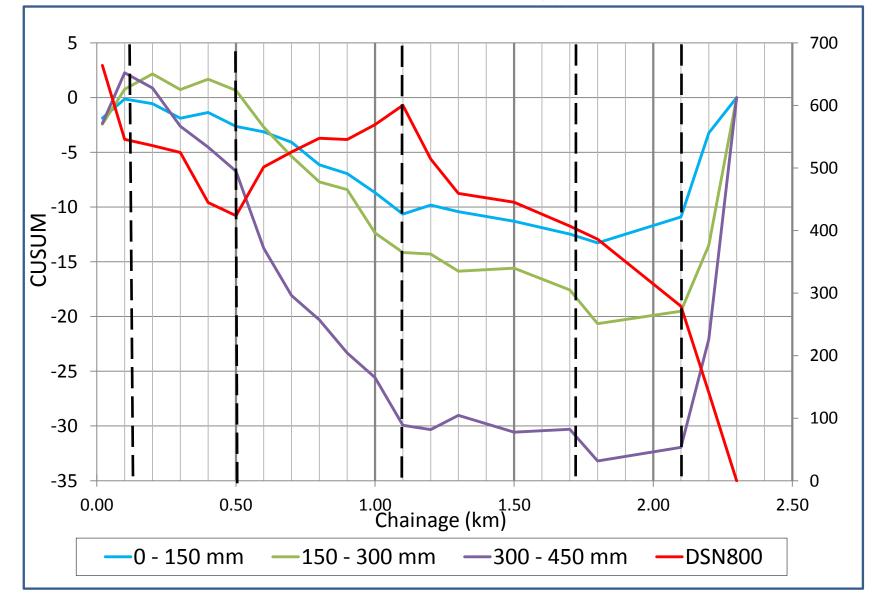
³³rd RPF - UMHLANGA DURBAN: May 9, 2017

Determine Uniform Road Sections- CUSUM

UKa

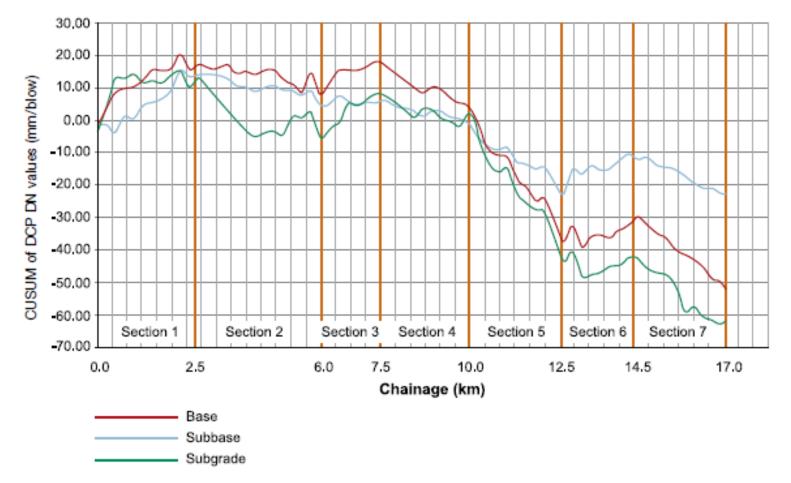
	B C				
	Chainage	Measured	Difference	CUSUM	
	(Km)	DCP	from	(Accumulated	
		(ON Value	average	values of C)	
		-mmblow)	(A-B)	-	
	1	14	-1.2	-1.2	2003 NSA
	2	13	-0.2	-1.4	Homogenous sections
	2 3	15	-2.2	-3.6	
	4	14	-1.2	-4.8	
	5	13	-0.2	-5.0	
	6	14	-1.2	-6.2	10
	7	7	5.8	-0.2	5
	8	9	3.8	3.4	
	9	8	4.8	8.2	
	10	13	-0.2	8.0	W 0 N -5 S -10 U -15
	11	15	-2.2	5.8	
	12	18	-5.2	0.6	5 -10
	13	14	-1.2	-0.6	U -15
	14	16	-3.2	-3.8	20
	15	14	-1.2	-5.0	-20
	16	14	-1.2	-6.2	0 2 4 6 8 10 12 14 16 18 20 22 24 26
	17	15	-2.2	-8.4	
	18	18	-5.2	-13.6	Chainage
	19	14	-1.2	-14.8	
	20	15	-2.2	-17.0	
	21	9	3.8	-13.2	
	22	10	2.8	-10.4	
	23	9	3.8	-6.6	
	24	12	0.8	-5.8	
	25	9	3.8	-2.0	CSIR
	26	11	1.8	-0.2	
	Average	A = 128			our future through science
Ľ					

33rd RPF - UMHLANGA DURBAN: May 9, 2017


an 🕭 🕸 .

Research for Community Access Partnership

 \sim

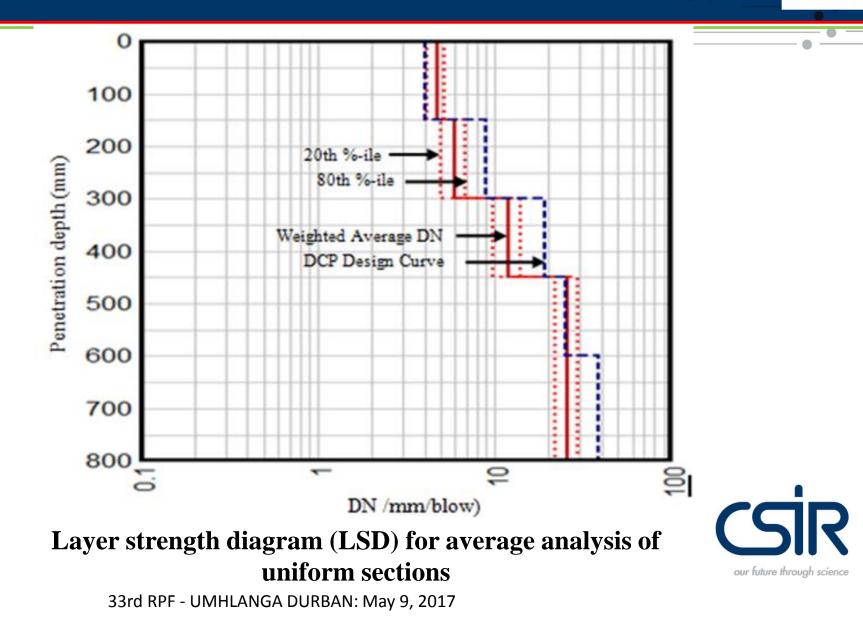

R

Determine Uniform Sections based on CUSUM of DSN₈₀₀

Determine Uniform Sections based on CUSUM of DN Values

Uniform Sections

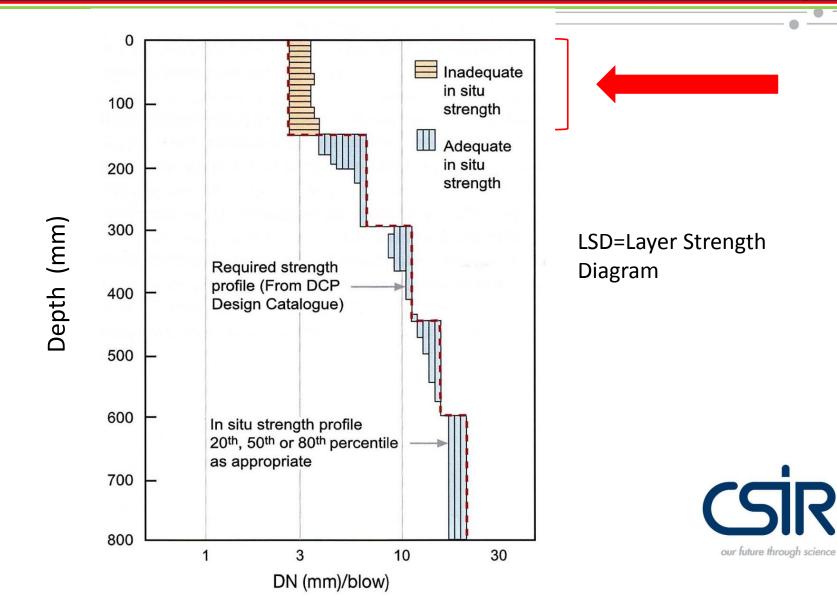
Adjust DN Values for Moisture Environment

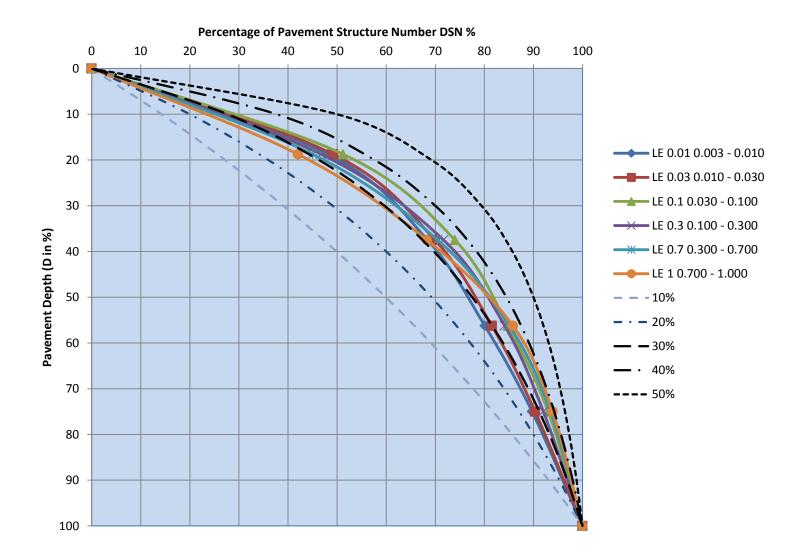


Chainage (km)	Point No	DN 0-150 (Base)	Percentile of minimum strength Profile (max. penetration rate – DN)			
		(Dase)	20 th	50 th (Mean)	80 th	
0.00	1	2.29				
0.25	2	4.44				
0.50	3	2.00				
0.75	4	8.67				
1.00	5	3.75	3.46	3.46 5.24		
1.25	6	8.07				
1.50	7	5.11				
1.75	8	5.37				
2.00	9	6.60				
2.25	10	10.12				
-	ed long-term e content in p					
Drier than at time of DCP survey			3.46	N/A	N/A	
	me of DCP su		N/A	5.24	N/A	
Wetter than at time of DCP survey			N/A	N/A	8.19 our l	

Compare In Situ & Required LSD for Uniform Section

UKa





UKa

a 🕭 🕸 🗸

Research for Community Access Partnership

Determine Upgrading Requirements (Cont'd)

Reworking the existing layer

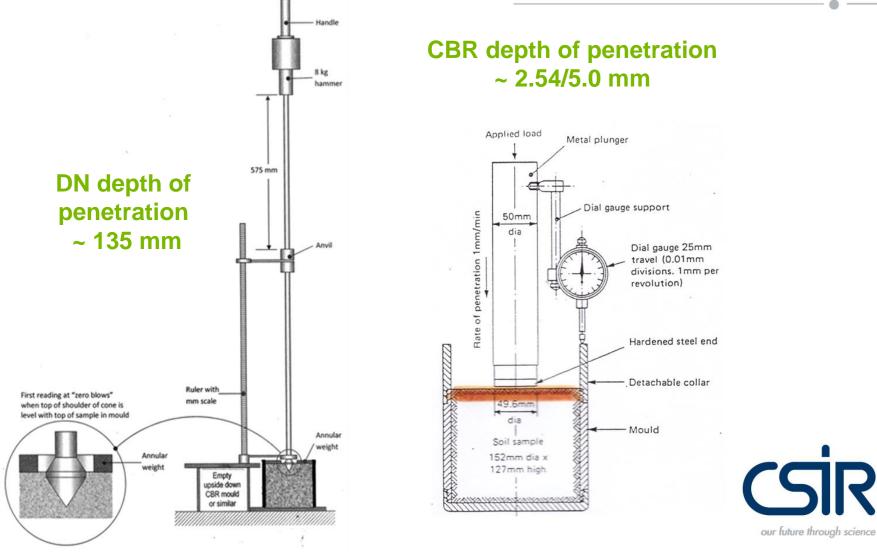
if only the density is inadequate and the required DN value can be obtained at the specified construction density and anticipated in-service moisture content.

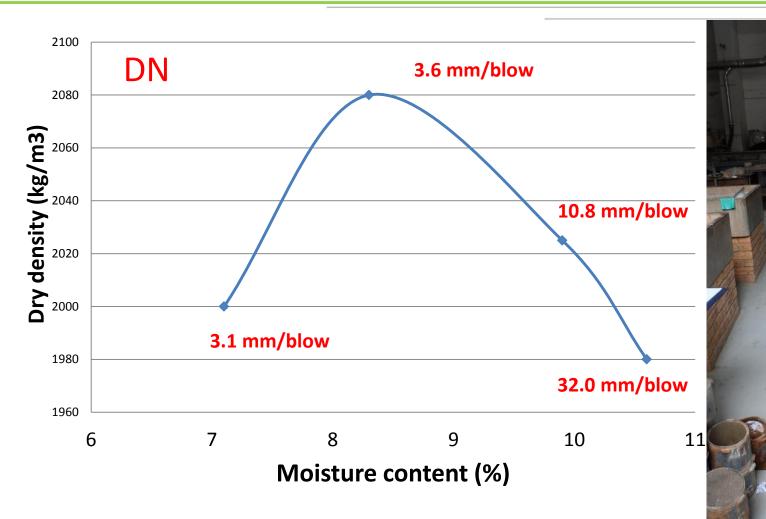
Replacing the existing layer

if material quality (DN value at specified construction density and anticipated in-service moisture content) is inadequate, then appropriate quality material will need to be imported to serve as the new upper pavement layer(s).

Augmenting the existing layer

if material quality (DN value) is adequate but the layer thickness is inadequate, then imported material of appropriate quality will need to be imported to make up required thickness prior to compaction.


- DN value serves as criterion for selecting materials to be used in upper/base layer of LVSR pavement.
- Provided design DN value is achieved, then in service performance indirectly takes account of actual grading and plasticity at given moisture and density which do not need to be separately specified.
 - DN value provides is a composite measure of materials resistance to penetration (= shear strength) at given moisture and density and is affected by material grading and plasticity.
 - ➢ Limits also placed on GM 1.0 − 2.2

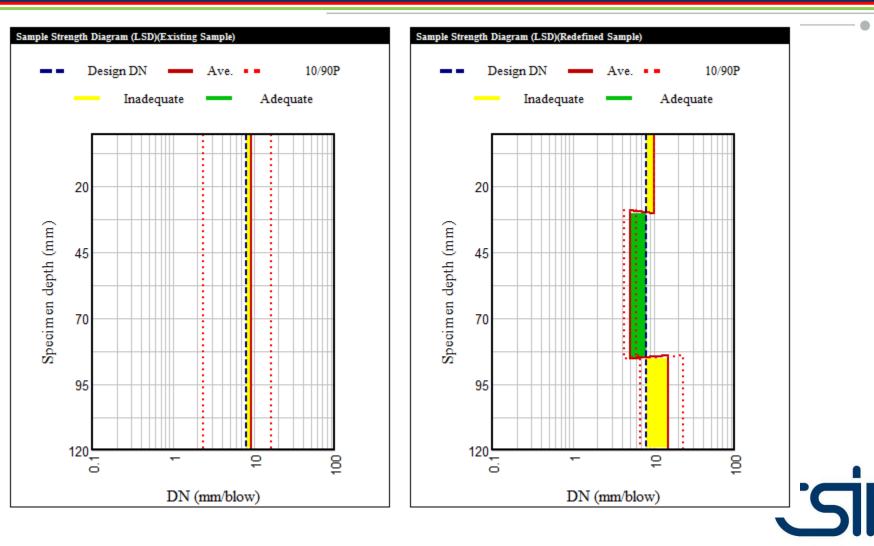

Determination of Laboratory DN Value

UKa

1888

Paige-Green, ~2009

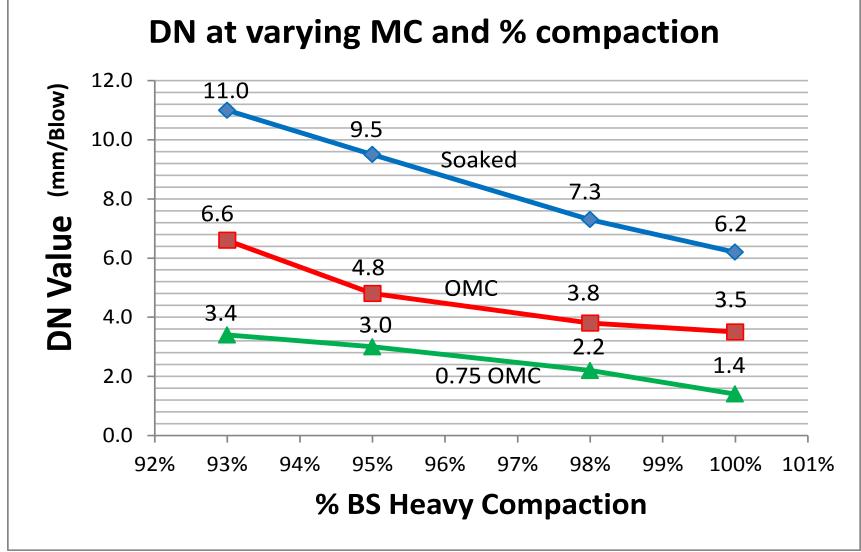
an 🕭 🕸 .


Laboratory DN Project – Samples Tree

⇔ WinDCP AFCAP Beta v1.04	- [Laboratory Example-1.dcp	a]						
🗩 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert	Anal <u>y</u> sis <u>S</u> ections <u>S</u> yste	em <u>W</u> indow <u>H</u> elp						
D 🖻 🔒 🐰 🛍 💼	🍜 🍇 🖬 👘 🦿	?						
🔄 Project '01'								
🖕 📇 Samples	Sample no 01	Rename Desi	ename Design DN (mm/blow) 8			ne 4 - SOAKED=>OMC+25% 🔻		
📄 📇 Sample no 01								
Mould no 20	Mould no 20		8	🗸 Variable Blows	OMC (%) 10		
📄 🔄 Sample no 02	100				Moisture content (MC) 13			
Mould no 21	Depth of mould (mm) 120							
🖻 🔄 Analysis			21/10/2015		Sample Reliabilty (P%	ន្យ 10P/90P 👻		
Single point Multiple point	Image: Survey date 21/10/2015 Image: Sample Reliability (P%) TUP/SUP							
	Reading number	Cumulative no of blows	Blows per reading	Depth (mm)	Flags			
	0 1	0	0	0				
	0 2	1	1	10				
	• 3	2	1	20				
	• 4	3	1	30				
	05	4	1	35				
	• 6	5	1	40				
	• 7	6	1	45				
	• 8	7	1	50				
	09	8	1	55				
	• 10	9	1	60				
	0 11	10	1	65				
	• 12	11	1	70				
	• 13	12	1	75				
	• 14	13	1	80				
	• 15	14	1	85				
	• 16	15	1	90				
	0 17	16	1	100				
	• 18	17	1	120				
	19							

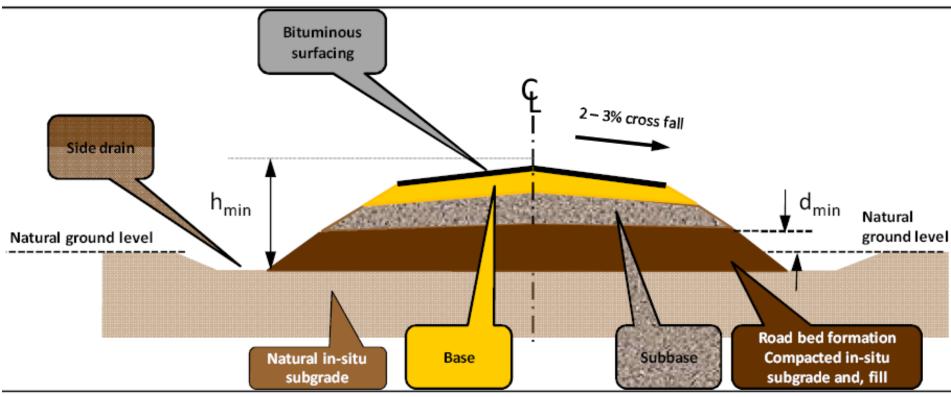
Laboratory DN Project – Analysis LSD:

our future through science


a 🕭 🕸

Research for Community Access Partnership

DN/Density/Moisture Relationship



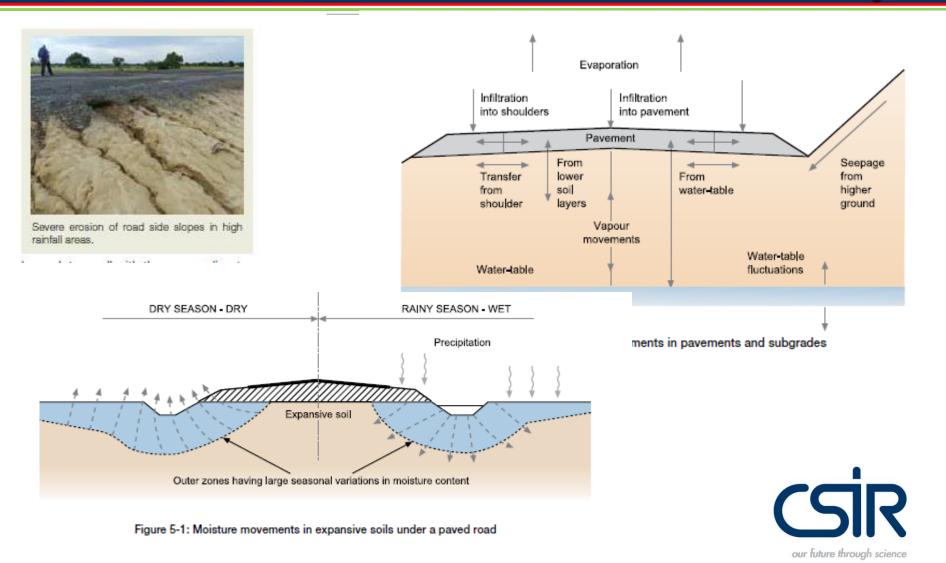
Optimisation of local moisture conditions

Ensure adequate drainage:

- h_{min} and d_{min}
- h_{min} > 750 mm
- d_{min} > 150 mm

33rd RPF - UMHLANGA DURBAN: May 9, 2017

- Moisture effects influence DCP results enormously (NB)
- Needs to be taken into account
- OWT is normally most variable wetter in rainy season, drier in dry season lag
- CL should be at about equilibrium moisture content (EMC)

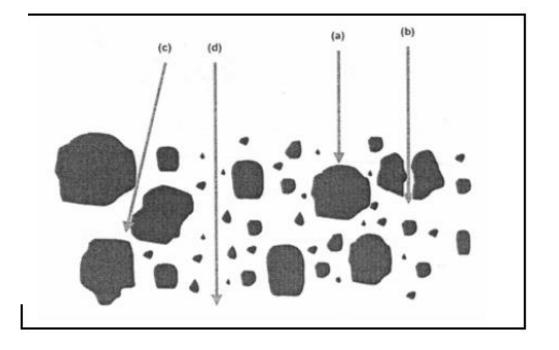

- Testing should preferably be carried out during (or towards the end of) the wet season
- This is not always possible
- Need to assess the moisture regime at the time of the DCP survey (SurMR) in relation to the likely worst (wettest) condition (SerMR)

Environment/Moisture ...

Adjust DN Values for Moisture Environment

Percentile of minimum strength profile (maximum penetration rate – DN mm/blow)		
Design traffic < 0.5 MESA	Design traffic 0.5 – 1.0 MESA	
20	30	
50	65	
80	90	
	(maximum penetration Design traffic < 0.5 MESA 20 50	

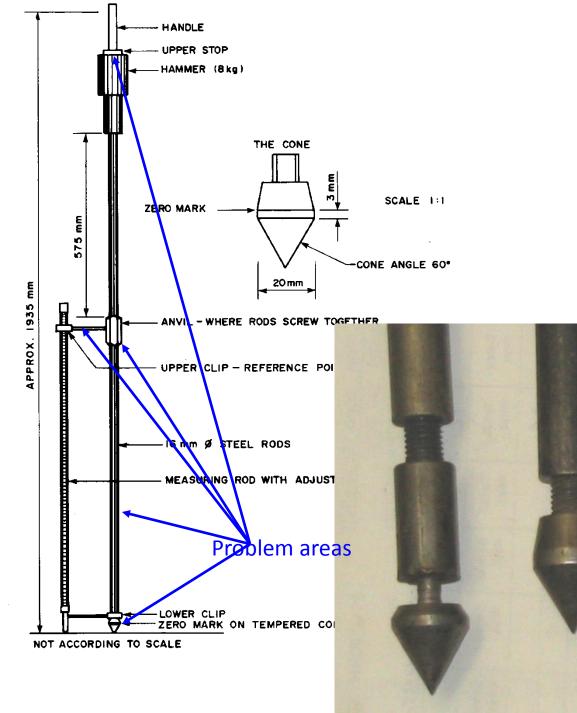
MESA: Million Equivalent Standard Axles


Typical DCP effects with large stones in pavement layer/structure:

(a) Cone cannot penetrate at all and the test needs to be re-done;

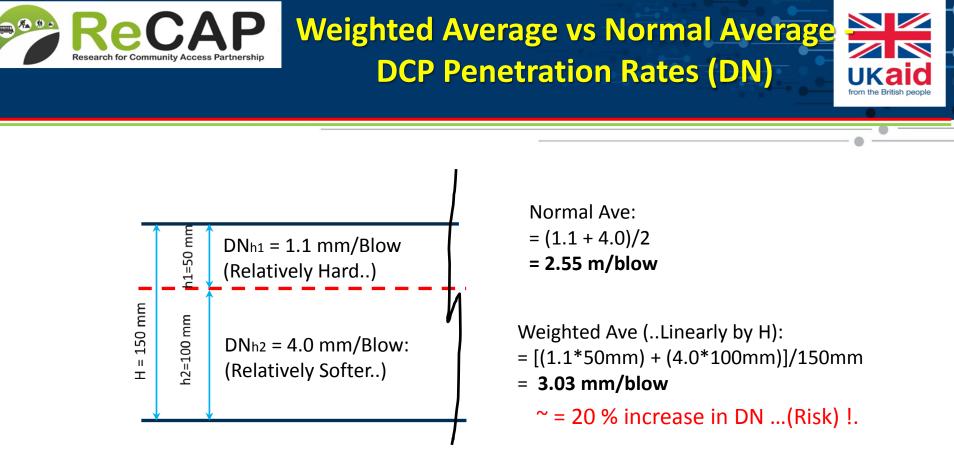
(b) Cone breaks stone but penetration is uncharacteristically hard and DSN_{800} is high (or very low DN);

(c) Cone tries to push stone aside.
Result is high DSN₈₀₀ because of side friction generated on cone shaft;
(d) Usually provides a normal result;

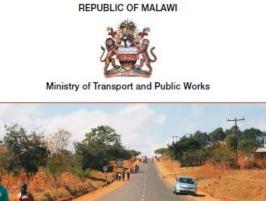


• DCP cone may strike a large stone:

STONES..


- Stone breaks
- Cone deflected
- Refusal
- Consequences:
 - OK for 1st case
 - Start again for others

DCP Cone tips..., check wear and tear..

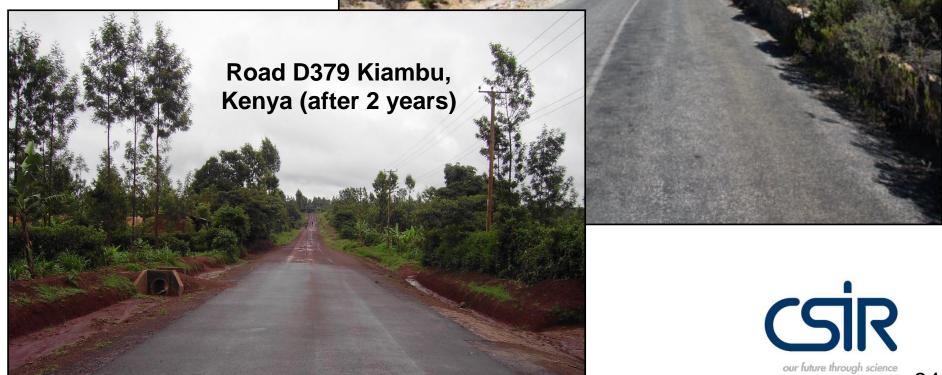

...until new research proof otherwise...

DCP Design Manual: Malawian Example

DESIGN MANUAL for Low Volume Sealed Roads Using the DCP Design Method

September 2013

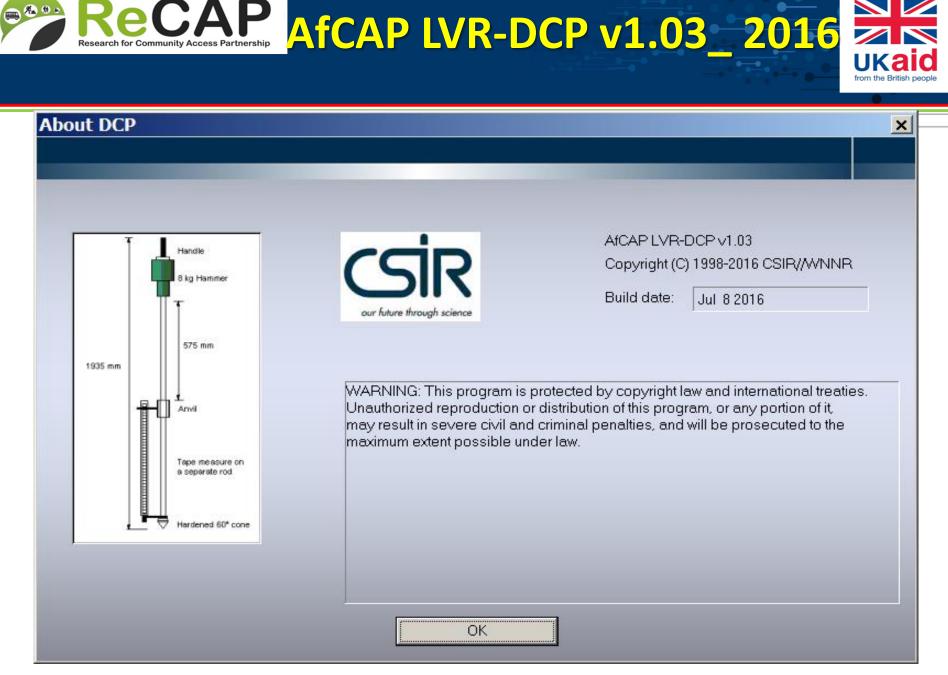
- Builds on pioneering work done in **RSA, UK and Australia)**
- Reduced reliance on conventional testing
- Supports an existing design approach
- **Demonstration projects so far in Kenya** and DRC and Tanzania.


Private and confidential

Examples of DCP Designed Roads..

Danger Point Road, South Africa (~10 years after construction)

Presentation Outline


Background

Dynamic Cone Penetrometer (DCP) Pavement Design Principles

DCP Pavement Design Method

- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions

AfCAP Low Volume Road (LVR) - DCP Software v1.03_2016

our future through science

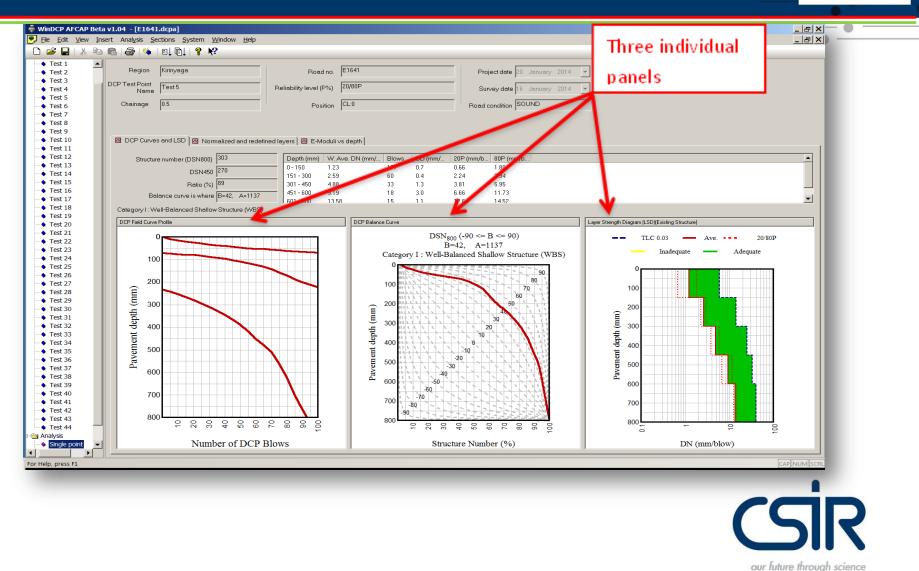
Select "Field" for DCP field data


×

Project Type

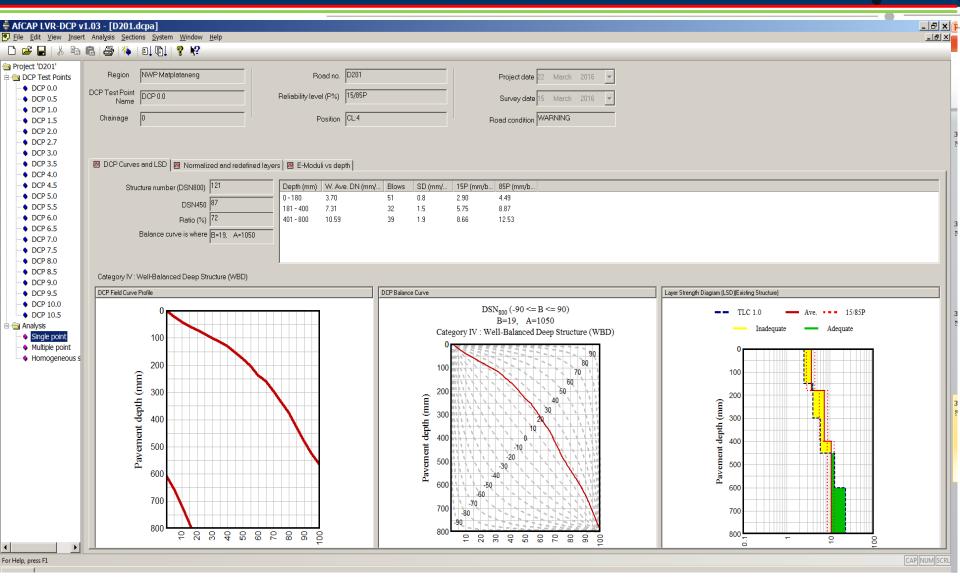
C Laboratory

Field project: measurements were taken in field (road). The total point depth of each measurement should not be less than 800mm and not exceed 1200mm.

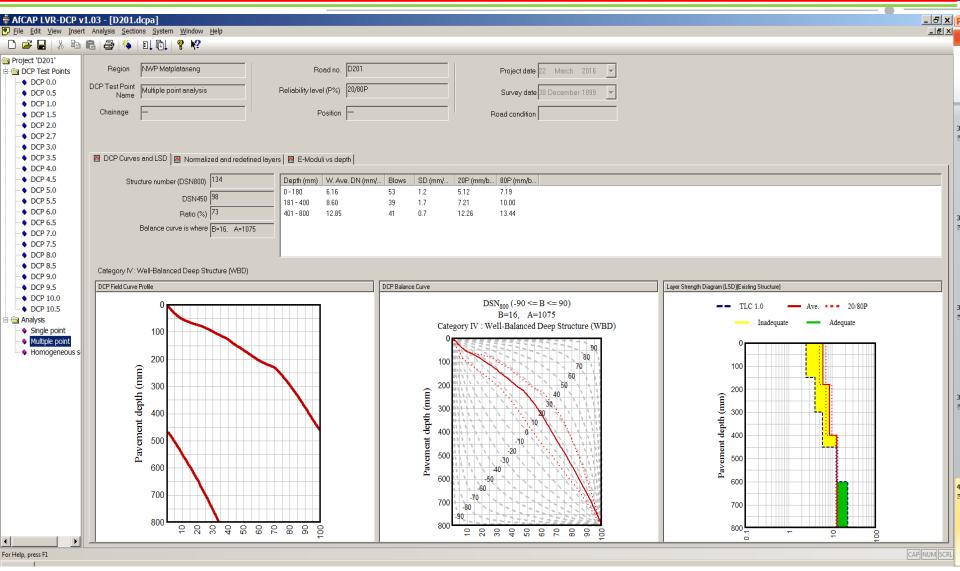


ОК	Cancel	Help
	· · · · · · · · · · · · · · · · · · ·	

our future through science



DCP Single Analysis

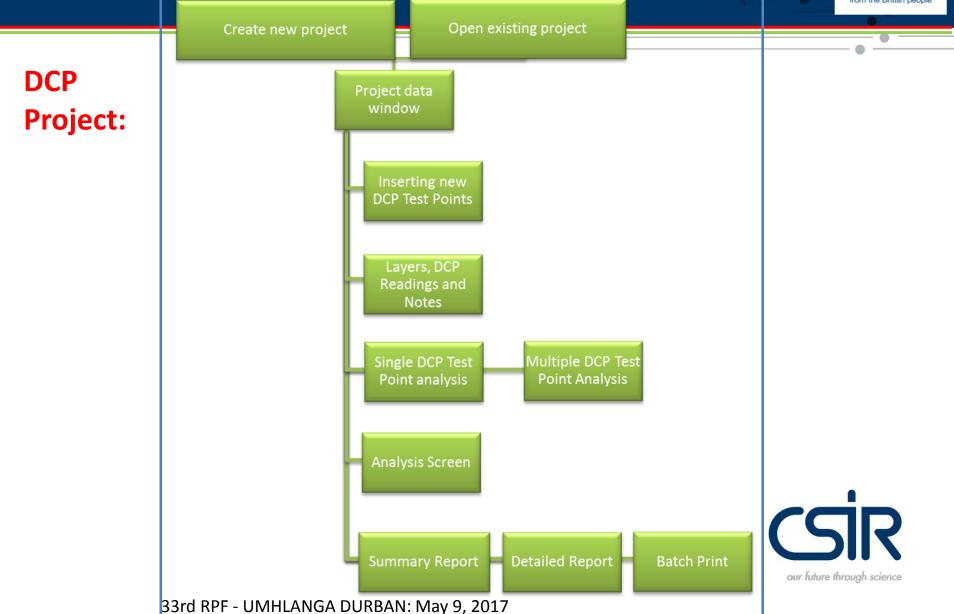


DCP Multiple Point Analysis

Option for Laboratory DN analysis..

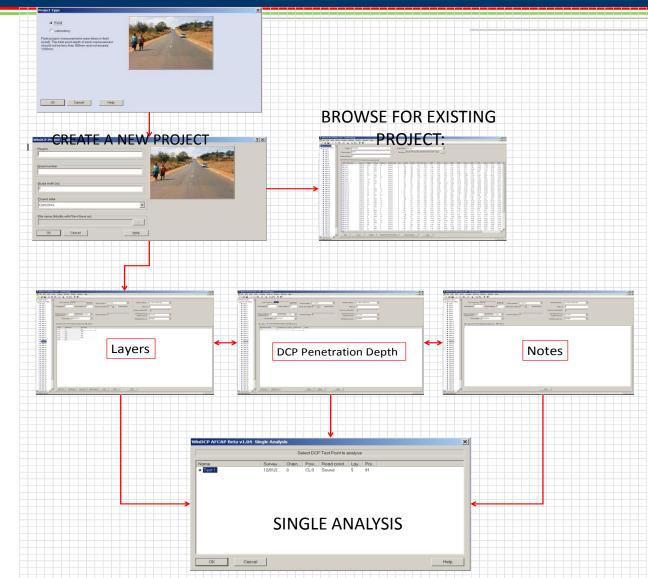
UKa

our future through science


from the British people

🎅 File Edit View Ins	C → No	Vindow Help Cascade Tile 1 E1641.dcpa 2 T357 Lifuwu Road.dcpa 3 Laboratory Example-1.dcpa	Project o File na	date 21/10/2 ame H:\DCF		:Р\AFCAP-Win DCP - Impro	···
	L DCP Test Points						
	DCP Test Points	Survey Moisture co OMC (%)	Moisture co	DSN1 10	P DN-1	90P	
	Sample no 01 Mould no 20	21/10/2 OMC=>OMC 0	0	17 2.3	9.17	16.03	
	Sample no 02 Mould no 21	21/10/2 OMC=>OMC 0	0	17 3.7	74 10.57	17.39	

Flowchart_1": DCP Project



START DCP ANALYSIS

33rd RPF - UMHLANGA DURBAN: May 9, 2017

UKa

from the British peopl

Recap Research for Community Access Partnership DCP Summary Report" – one page report (as in EasyDCP)

	D		ary Report -				
			Project date: 89 20/ Sec		o (%): fic Loading Class:	07 January, 2016 83 TLC 0.03	
		10000115	ivalent strength	Existing Pavem	ent Structure)		
Depth	W. Ave. DN.	Blows	SD	20P **	80P	Ave, E-Moduli	E-Moduli Range
(mm) 0 - 150	(mm / blow) 4,49	50	(mm / blow) 0.8	(mm / blow) 3.81	(mm / blow) 5.16	(MPa) 227	20P - 80P (MPa) 104 - 508
151 - 300	8.75	25	1.8	7.23	10.28	111	50 - 257
301 - 450 451 - 600	15.00 21.41	14	1.7 1.9	13.59 19.80	16.42 23.01	63 43	30 - 132 21 - 88
601 - 800	26.26	10	1.4	25.11	27.40	35	18 - 69
Depth	W. Ave. DN.	Blows	t strength (Redef	ined-EasyDCP1 20P **	80P	Ave. E-Moduli	E-Moduli Range
(mm)	(mm / blow)	PERMIT	(mm / blow)	(mm / blow)	(mm / blow)	(MPa)	20P - 80P (MPa)
0 - 80 80 - 160	3.82 5.36	32 20	0.3 0.5	3.61 4.91	4.03 5.80	269 188	135 - 538 92 - 388
160 - 230	7.40	13	0.7	6.80	8.00	133	65 - 275
230 - 310 310 - 460	10.69 15.38	11 13	1.0 1.6	9.87 14.01	11.51 16.75	90 61	44 - 185 30 - 127
460 - 620	21.92	9	1.7	20.47	23.38	42	21 - 85
620 - 800	26.54	9	1.1	25.59	27.48	34	18 - 67
Balance Curve				Normalize	d Curve		
1000 1000 1000 1000 1000 1000 1000 100		200 100 100 100 100 100 100 100					
Layer Strength Diag	gram (LSD)(Ex 0.03 💻 Ave. •		cture)	Layer Stro		m (LSD)(Redefine	d Structure) 0/80P
	Inadequate —	Adequate			0 100	equate — Adequat	e
(uuuu) they are a constrained and a constrained					200 300 400 600 700		
800 700 800	-	01 001			800	t of	8

	rinyaga Road	DCP Sumra number: E1	641	Project date:	20 January,	2014 Analysis date:	07 January, 2016
800 (Blows):	246	DSN450 (1		216		o (%):	88
ince Number (%) (BN100) 51.3	Reliabilit	y Level (%):		80P Traf	fic Loading Class:	TLC 0.03
sture Regime:	OMC	OMC (%):	0	Mois	ture Content (%):	0
0, A=1243		DCP Test	Point:	Tes	st 7		
egory II : Averagel	y Balanced Shallow Str	ucture(ABS)				Re-Defined layers:	FacyDCP
1010/25 /01020		28 88CV				Re-Defined layers.	EdsyDCP
		Average equi	valent strength (Existing Pavem	ent Structure)		
Depth	W. Ave. DN.	Blows	SD	20P **	80P	Ave. E-Moduli	E-Moduli Range
(mm)	(mm / blow)		(mm / blow)	(mm / blow)	(mm / blow)	(MPa)	20P - 80P (MPa)
0 - 150	2.10	139	1.4	0.90	3.30	507	166 - 2342
151 - 300	3.37	45	0.5	2.99	2.15	307	146 - 658
301 - 450	4.96	31	0.8	4.25	5.67	204	94 - 452
451 - 600	9.04	17	1.6	7.70	10.37	108	49 - 241
601 - 800	15.79	13	2.4	13.80	17.78	60	28 - 130
001 000		erage equivalent					20 100
Depth	W. Ave. DN.	Blows	SD	20P **	80P	Ave. E-Moduli	E-Moduli Range
(mm)	(mm / blow)	DIGWS	(mm / blow)	(mm / blow)	(mm / blow)	(MPa)	20P - 80P (MPa)
0 - 75	0.83	115	0.4	0.50	1.16	1361	508 - 4360
75 - 363	3.52	86	0.6	2.99	4.04	294	134 - 658
363 - 519	6.39	25	1.1	5.50	7.29	156	72 - 344
519 - 800	14.22	21	3.2	11.56	16.89	67	29 - 156
alance Curve			0.12	Normalize			
0 100 (uuu) thdəp transard 400 700 800	Number of DCP Q <			Davement depth (mm) 000 000 000 000 000 000 000 000 000		8 ÷ ° ÷ 8 from Standard Pa e Curve (SPBC) %	
ayer Strength	Diagram (LSD)(E	xisting Struc	ture)	Layer Stre	ength Diagra	m (LSD)(Redefine	d Structure)

d

υκα

from the British people

Pavement depth (mm)

SR

our future through science

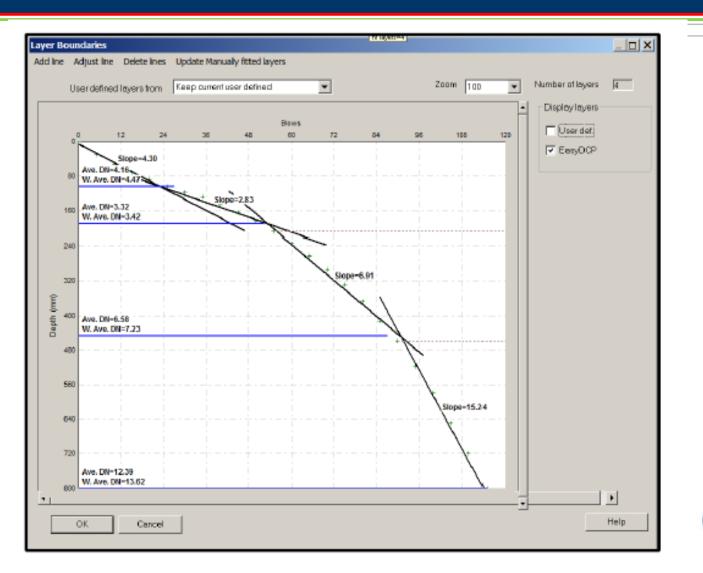
Project file: H:\DCP-RCCD-GeoDCP\AFCAP-Win DCP - Improvements-2013\AFCAP-DCP\WinDCP AFCAP Alpha\E1641.dcpa

DN (mm/blow)

800 5

Pavement depth (mm)

Various "Push" buttons:..-



WinDCP AFCAP Bet	ta v1.04 - [E1641.dcpa]	0
N.	isert Analysis <u>S</u> ections <u>Sy</u> stem <u>W</u> indow <u>H</u> elp	•
D 🚅 🖬 🐰 🗈		
Project 'E1641'		
DCP Test Points	DCP Test Point Test1 Bename Board condition 3-Sound Moisture regime 1-DRY=>OMC-25%	
• Test 1	DCP Test Point Test1 Bename Road condition 3- Sound Moisture regime 1 - DRY=>OMC-25%	
• Test 2		
• Viest 3	Chainage(km) ⁰⁰⁰ Road width (m) ²⁰ Blows per reading ⁵ Variable Blows OMC (%) ¹⁰	
🗣 Test 4	Moisture content (MC) 8	
🔸 Test 5		
Test 6	Distance (m) from 0 Road side 2-CL V Number of layers 5 DCP Design Curves (Macter Curves)	
🗣 Test 7	Centre line (CL) (Master Curves) (Master Curves)	
• Test 8	Survey date 16/01/2014 🔽 Reliability level (%) 20P/80P	
Test 9		
 Test 10 		
• Test 11	🟥 Layers 🗣 DCP Penetration Depth (mm) 🕒 Notes	
 Test 12 Test 13 	Layer Start (mm) End (mm)	
Test 13	<u> </u>	
Test 14		
• Test 16	1 th 3 301 450	
Test 17	** 4 451 600	
• Test 18	±5 601 800	
• Test 19		
• Test 20		
Test 21		
🗣 Test 22		
- 🔷 Test 23		
 Test 24 		
 Test 25 		
• Test 26		
 Test 27 Test 20 		
 Test 28 Test 29 	Puck Buttons	
• Test 30	Push Buttons	
 Test 30 		
Test 32		
• Test 33		
• Test 34		
• Test 35		
Test 36		•
• Test 37	3	
🔶 Test 38		
- 🔶 Test 39		SIR
• Test 40		
• Test 41		
• Test 42		
Test 43	Insert row Delete row Auto Layer Manual Layer Copy Paste Help	
For Help, proce 51		our future through science
For Help, press F1		

"Manual" Fitting of layers/sub-layers..

CSR our future through science

Figure 28.

80

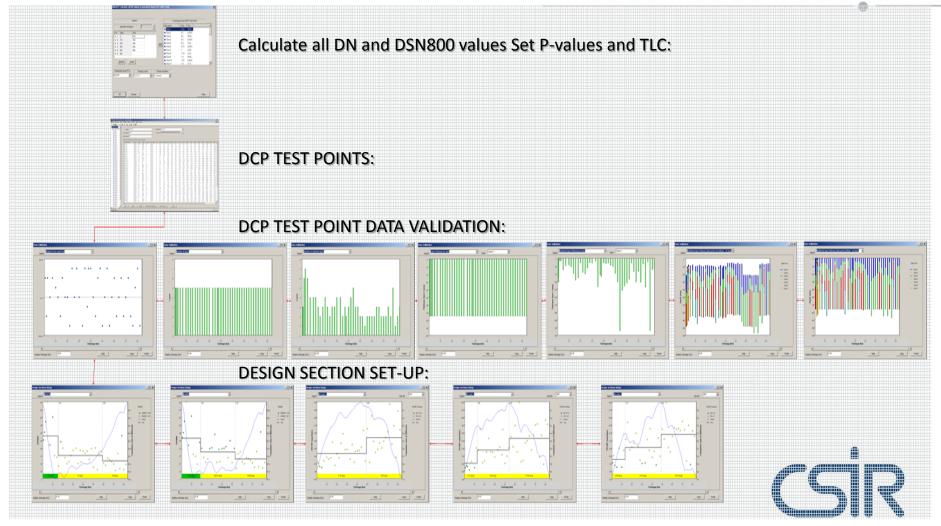
 Manual layer fitting menu for layer boundaries to be defined. Note: EasyDCP auto re-defined layers also shown here by the broken lines.

Option to include your own "Notes":

WINDCP AFCAP BE	eta v1.04 - [E1641.dcpa]
🛃 <u>F</u> ile <u>E</u> dit <u>V</u> iew 🔅	<u>I</u> nsert Analysis <u>S</u> ections <u>S</u> ystem <u>W</u> indow <u>H</u> elp
🗅 🚔 🔲 🐰 🖻	è 💼 🍜 🍇 🗉 📭 🤗 📢
Project 'E1641'	▲
- DCP Test Points	DCP Test Point Test 1 Bename Bename
Test 1	
Test 2	Chainage(km) 0.03 Road width (m) 20 Blows
Test 3	
• Test 4	
Test 5	
🗣 🗣 Test 6	Distance (m) from 0 Road side 2-CL V Numt
🔹 🔶 Test 7	Centre line (CL)
Test 8	Survey date 16/01/2014 🗨
Test 9	
• Test 10	
• Test 11	🔛 🔛 Layers 🔍 DCP Penetration Depth (mm) 🖳 Notes 🦰
• Test 12	
• Test 13	Any notes may be added here as required by the user.
• Test 14	
Test 15	

33rd RPF - UMHLANGA DURBAN: May 9, 2017

There are two stages to divide a project in "Homogeneous Sections":


Sectioning the project:

- Stage 1: The DCP Project is sectioned using each of the DCP "Aspects" from "DSN₄₅₀/DSN₈₀₀" (or DN) per layer which are deemed to be significant by User;
- Stage 2: The DCP Sections from Stage 1 are compared and DCP Sections defined which best combine the single DCP parameter sections – USER DEFINED, BASED ON YOUR EXPERIENCE..

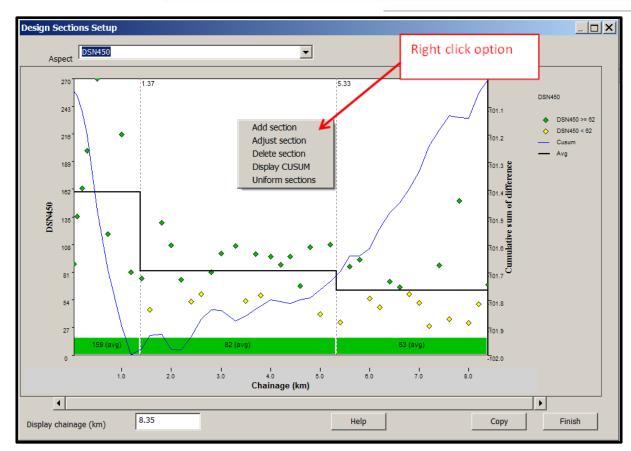
Calculate all DN and DSN₈₀₀ values

our future through science

UK

New Report Table- calculate all ASPECTS:

-
=
-
-


our future through science

UKai

DETERMINE UNIFORM ROAD SECTIONS

New Report Table - report on project screen...

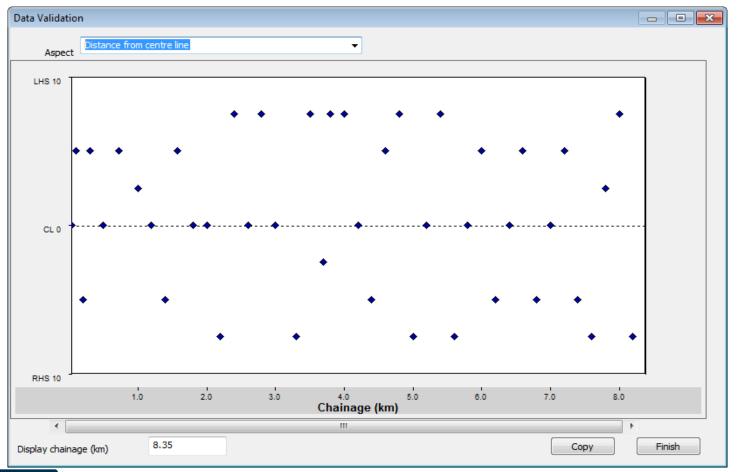
The calculated DN and DSN800 values are now displayed on the project screen. Press Save As Excel to save to xlsx.

🛗 DCP Test Points 🔍 DC	P Sections Sum	mary Report									
DCP Test Points	Survey date	Chainag	Road Si	Dist (m) fr	Road condition	Layers	DSN450	DSN800	20P - 150	DN - 150	80P - 150
Test 1	16/01/2014	0.03	CL	0	Sound	5	88	115	2.96	4.03	5.10
🔷 Test 2	16/01/2014	0.1	LHS	5	Sound	5	135	161	2.14	2.58	3.03
🔷 Test 3	16/01/2014	0.2	RHS	5	Sound	5	163	180	1.32	1.94	2.55
🔷 Test 4	16/01/2014	0.3	LHS	5	Sound	5	199	225	1.00	1.53	2.05
🔷 Test 5	16/01/2014	0.5	CL	0	Sound	5	269	302	0.66	1.23	1.80
🔷 Test 6	16/01/2014	0.72	LHS	5	Sound	5	118	130	1.73	2.40	3.08
🔷 Test 7	16/01/2014	1	LHS	2.5	Sound	5	215	245	0.90	2.10	3.30
🔷 Test 8	16/01/2014	1.19	CL	0	Sound	5	81	96	2.61	3.10	3.59
🔷 Test 9	16/01/2014	1.4	RHS	5	Sound	5	74	87	2.89	3.37	3.85
🔷 Test 10	17/01/2014	1.57	LHS	5	Sound	5	44	56	5.14	5.97	6.79
🔷 Test 11	17/01/2014	1.8	CL	0	Sound	5	129	142	1.95	2.22	2.50
🔷 Test 12	17/01/2014	2	CL	0	Sound	5	107	119	1.89	2.99	4.10
🔷 Test 13	17/01/2014	2.2	RHS	7.5	Sound	5	73	83	3.13	3.53	3.93
🖕 Test 14	17/01/2014	24	LHS	7.5	Sound	5	52	64	4 00	513	6.25

New Report Table – or Save As *.xlsx

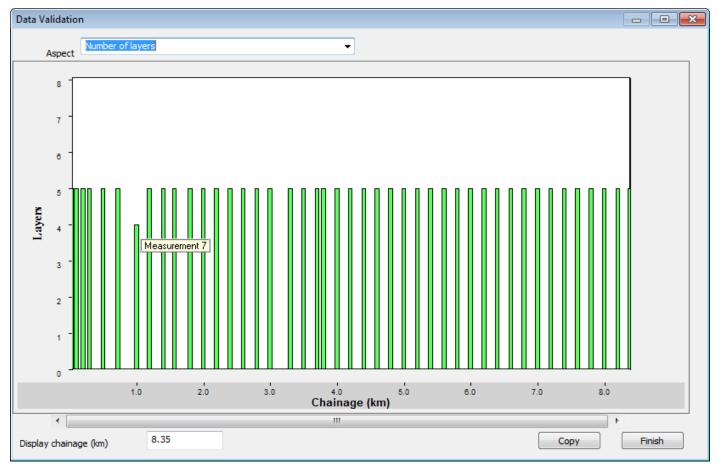
The results can now be viewed in Excel xlsx

1							1						
A	В	С	D	E	F	G	H	- I	J	K	L	M	N
Averages from	Weighted Average												
Percentiles from	Normal Distribution												
							_				_		Weighte
DCP Test Point	DCP Test Point Name	Survey date	Distance	Road	Distance (m)	DSN450	DSN800		0-150 mm			151-300 mi	n
nr			(km)	Side	from centre line			20P	Mean	80P	20P	Mean	80P
1	Test 1	16/01/2014	0.03	CL	0	88	115	2.960	4.030	5.100	4.380	5.190	6.010
2	Test 2	16/01/2014	0.1	LHS	5	135	161	2.140	2.580	3.030	2.600	3.170	3.740
3	Test 3	16/01/2014	0.2	RHS	5	163	180	1.320	1.940	2.550	2.660	3.530	4.390
4	Test 4	16/01/2014	0.3	LHS	5	199	225	1.000	1.530	2.050	2.150	3.110	4.070
5	Test 5	16/01/2014	0.5	CL	0	269	302	0.660	1.230	1.800	2.240	2.590	2.940
6	Test 6	16/01/2014	0.72	LHS	5	118	130	1.730	2.400	3.080	3.560	4.660	5.760
7	Test 7	16/01/2014	1	LHS	2.5	215	245	0.900	2.100	3.300	2.990	3.370	3.750
8	Test 8	16/01/2014	1.19	CL	0	81	96	2.610	3.100	3.590	6.630	8.510	10.390
9	Test 9	16/01/2014	1.4	RHS	5	74	87	2.890	3.370	3.850	6.530	8.130	9.730



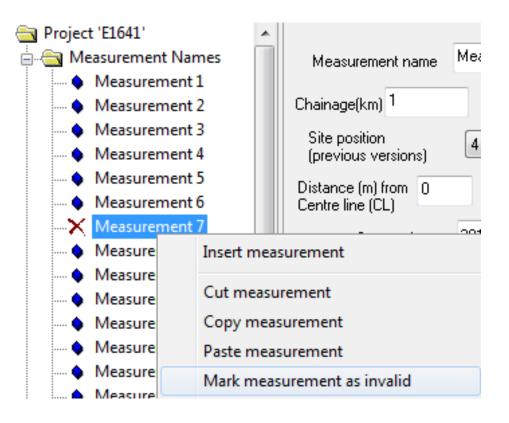
Newly added: Aspect 1: DCP Measurement Layout validation

Example 1: Plot of DCP Measurements along Chainage – Aspect: "Distance from centre line":



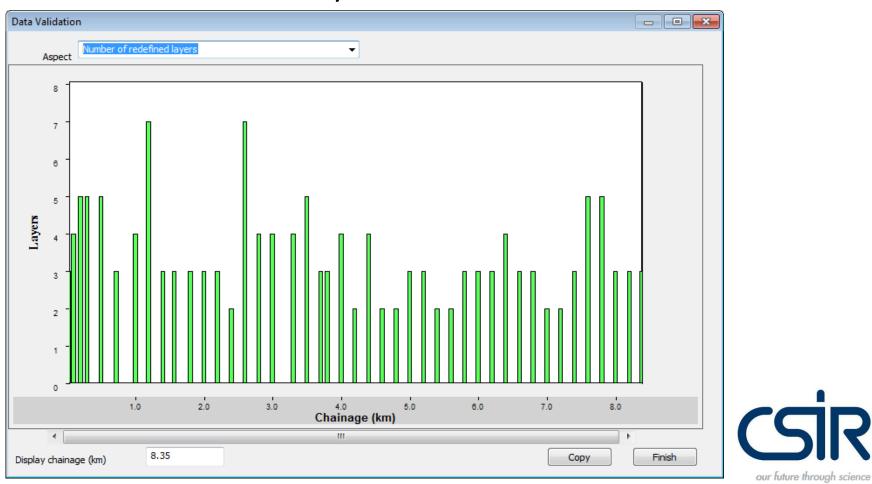
Newly added: Aspect: "Number of layers"

Example 2: Plot of DCP Measurements along Chainage – Aspect: "Number of layers":



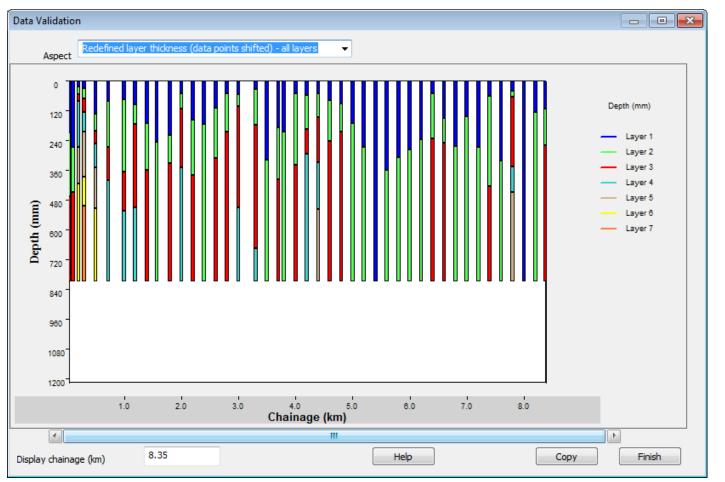
Newly added: Aspect: "Delete Outliers"

 Outlier measurements can be deleted from the project or marked as invalid. Measurements marked as invalid will not be included in the homogeneous section analysis but is not deleted from the project.



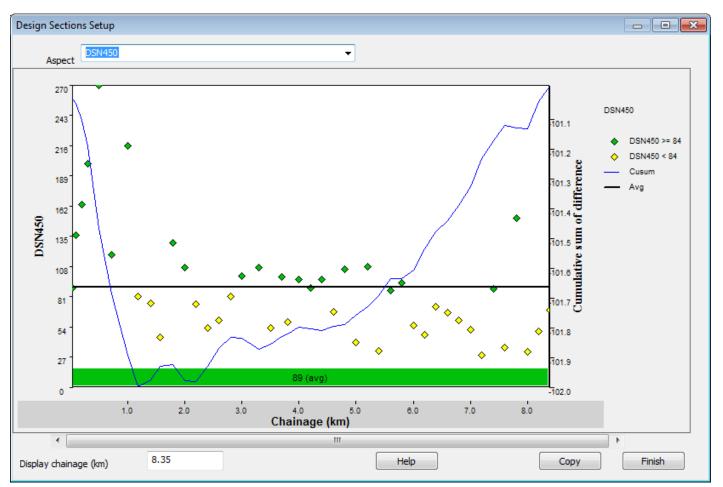
Newly added: Aspect: "Number of redefined layers"

Example 3: Plot of DCP Measurements along Chainage – Aspect: "Number of redefined layers"



Newly added: Aspect: "Redefined layer depths"

Example 4: Plot of DCP Measurements along Chainage – Aspect: "Redefined layer thicknesses or depths"

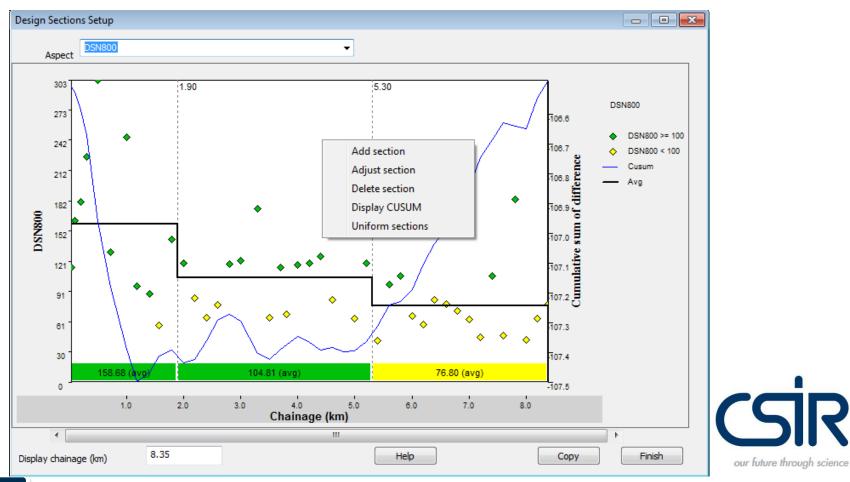


our future through science

CUSUMS – Design Sections Setup:

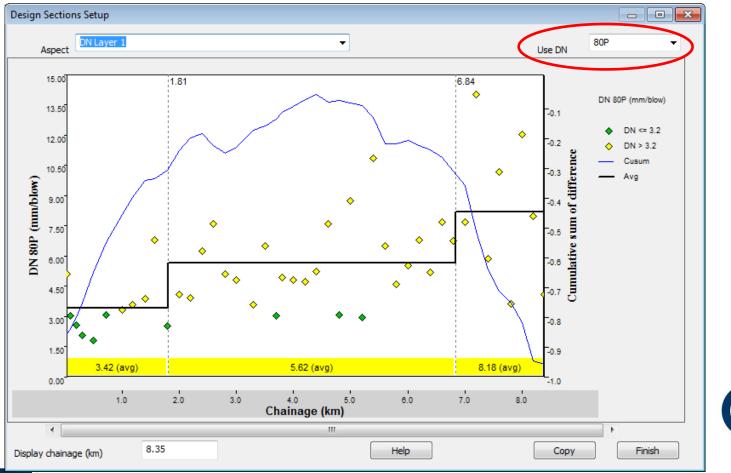
By Aspect: "DSN₄₅₀":

Sir


our future through science

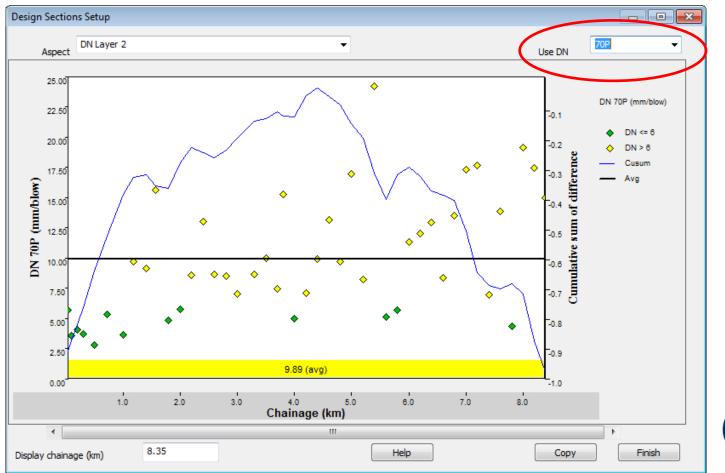
CUSUMS – Design DCP Sections (Stage 1)

By Aspect: "DSN₈₀₀" & Sections along Chainage (by Right Click):



CUSUMS – Design DCP Sections (Stage 1)

By Aspect: "Layer 1" & Sections along Chainage (by Right Click):



CUSUMS – Design DCP Sections (Stage 1)

By Aspect: "Layer 2" & Sections along Chainage (by Right Click):

🔍 🗋 5 💪 a ★ Bookmarks F Facebook 🗋 ftp://ftp.csir.co.za/ is not : 💪 Google 💪 http://www.google.com/ 🗉 🎿 http://www.klm.com/ is n M Inbox (166) - mdebeer85 🚺 LVR - LVR-DCP-Software 🚺 LVR Members - All Items

👼 f 🛩 in

Mants - 6 X

Other bookmark

Safe and sustainable transport for rural communities

Home About Research Regional Projects News Blog Resources Tenders Get Involved Contact

identify localised problem spots or sections, most often related to drainage problems, for which specific measures must be taken without affecting the overall design.

- Layer Strength Diagrams (LSD) with weighted average DN values for each 150 mm in-situ layers down to a depth of 800 mm used to determine the appropriate design intervention.
- Easy identification of uniform sections for optimised pavement design based on representative average DN values for each layer, adjusted for expected long-term pavement moisture regime.
- Assessment of the attained pavement balance against ideal pavement balance curves;
- A laboratory test module for testing and evaluating the strength of imported pavement materials.
- Pre-defined report formats.

The AfCAP LVR-DCP package is well suited for road practitioners and trainees.

Although the software automates many of the procedures that could otherwise have been performed using an Excel spreadsheet, and thus makes it possible for the designer to quickly and easily evaluate different design options, it must be emphasised that the AfCAP LVR DCP software is only a tool and is no substitute for sound enaineerina iudaement which must always be exercised by the designer

Join the EWEDER Software Oser Forum

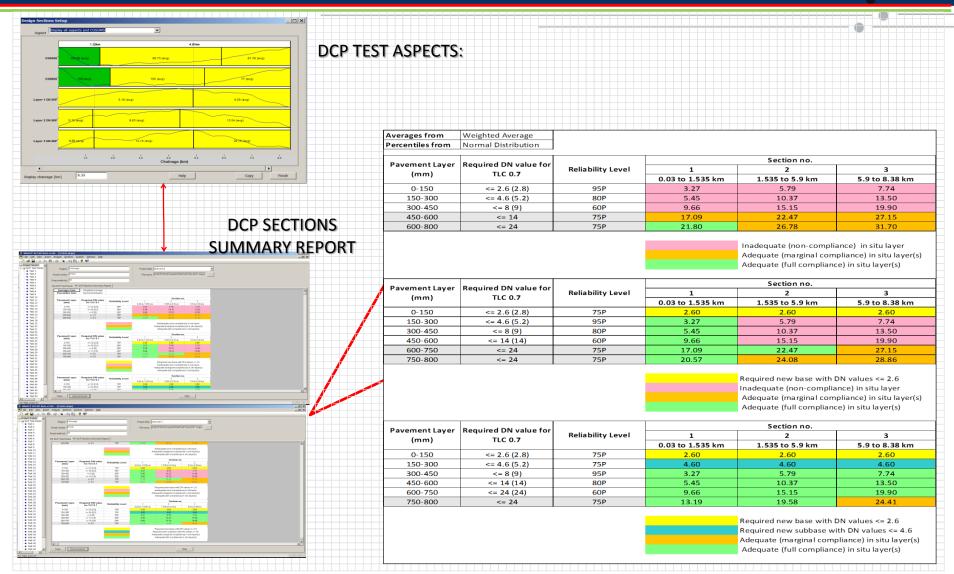
Your registration will give you access to a professionally moderated, online LVR DCP Software User Forum, in which you can share your experience in using the software with peers and where you can ask your questions to a team of specialists.

If you have already registered, please login to the Forum here.

For further reading

CSIR (2016), Improvements to the WinDCP software for Pavement Design for Low Volume Roads

Hongve, J. and E. Mukandila (2016), Training and Application of the DCP-DN Pavement Design Method in Ghana


Hongve, J. and E. Mukandila (2016), Implementation of Technical Audit and Training of a New Batch of Local Practitioners in the DCP-DN Pavement Design Method in Malawi

DCP TEST: FINAL OUTPUT: UNIFORM ROAD SECTIONS: RESULTS

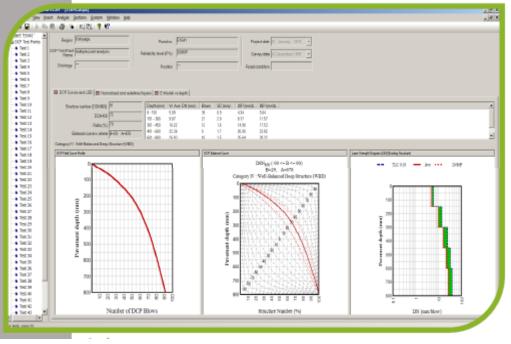
DCP TEST: FINAL OUTPUT: UNIFORM ROAD SECTIONS: RESULTS

P LVR-DCP v1	.03 - [E1641.dcpa]						
<u>E</u> dit <u>V</u> iew <u>I</u> nsert	Analysis <u>S</u> ections <u>System</u>	n <u>W</u> indow <u>H</u> elp					
📕 🐰 🖻 🛛	2 🕾 🎋 🗉 🖬	🥐 🍋					
E1641'				1			
Test Points	Region Kirinyaga	1		Project date 20/0	1/2014		-
Test 1	riogion [1 -						
est 2	Road number E1641			File name H:\E	CP_LVR_AFCAP-Win DC	P - Impro∨ements_s	
est 3							
est 4							
est 5				1			
est 6	🛗 DCP Test Points 😵	DCP Sections Report					
est 7		-					
Test 8	Averages from Percentiles from	Weighted Average Normal Distribution	-				
est 9	Percentiles from	Normal Distribution					
Test 10					Section no.		
Test 11	Pavement Layer	Required DN value	1	2	3	4	5
Test 12	(mm)	for TLC 0.3	0.03 to 1.27 km	1.27 to 2.645 km	2.645 to 4.845 km	4.845 to 7.13 km	7.13 to 8.38 km
Test 13	0-150	<= 3.2 (3.5)	2.8 (80P)	4.7 (80P)	4.6 (80P)	6.0 (80P)	8.0 (80P)
est 14	150-300	<= 6 (6.9)	5.3 (90P)	11 (90P)	11 (90P)	14 (90P)	14 (90P)
est 15	300-450	<= 12 (14)	10 (90P)	20 (90P)	13 (90P)	24 (90P)	19 (90P)
est 16	450-600	<= 19	18 (90P)	29 (90P)	18 (90P)	31 (90P)	25 (90P)
est 17	600-800	<= 25	22 (90P)	33 (90P)	21 (90P)	34 (90P)	33 (90P)
Test 18							
Test 19			Inadequate (non-complia				
est 20				pliance) in situ layer(s) the	t need to be improved		
est 21			Adequate (full compliand	ce) in situ layer(s)			
Test 22							
Test 23	Pavement Layer	Required DN value		0	Section no.		-
Test 24	(mm)	for TLC 0.3	1	2 1.27 to 2.645 km	3	4 4.845 to 7.13 km	5 7.13 to 8.38 km
Test 25	0-150	<= 3.2 (3.5)	0.03 to 1.27 km 2.8 (80P)	1.27 to 2.645 km 3.2	2.645 to 4.845 km 3.2	4.845 to 7.13 km 3.2	7.13 to 8.38 km 3.2
Test 26	150-300	<= 5.2 (5.5)	5.3 (90P)	4.7 (80P)	4.6 (80P)	6.0 (80P)	6.0
Test 27	300-450	<= 12 (14)	10 (90P)	11 (90P)	4.0 (00P) 11 (90P)	14 (90P)	8.0 (80P)
Test 28	450-600	<= 19	18 (90P)	20 (90P)	13 (90P)	24 (90P)	14 (90P)
est 29	600-800	<= 25	22 (90P)	30 (90P)	18 (90P)	32 (90P)	21 (90P)
est 30			(/	(/		(/	- (/
Test 31			New base added with DI	Nivalues <= 3.2			
Test 32			New subbase added wit	h DN values <= 6			
iest 33			Inadequate (non-complia	ance) in situ layer			
Test 34			Adequate (marginal com	pliance) in situ layer(s) the	t need to be improved		
Test 35			Adequate (full compliand	ce) in situ layer(s)			
Test 36							
est 37							
est 38							

a 🕭 🛛

Research for Community Access Partnership

Software Help File (SHF):



User Manual/Help file:

WinDCP AfCAP Beta v1.04

Project subtitle: Final Draft

Software Availability: Free from AfCAP..

Free AFCAP LVR-DCP Software Available From:

Home Page: <u>http://research4cap.org</u> GoTo: Resources → Low Volume Roads DCP Software

Registration for LVR DCP Software and User Forum: http://research4cap.org/SitePages/LVRDCPSoftware.aspx

Presentation Outline

Background

- Dynamic Cone Penetrometer (DCP) Pavement Design Principles
- DCP Pavement Design Method
- AfCAP Low Volume Road (LVR) DCP Pavement Software
- Summary & Conclusions

Summary of DCP Method-Strengths (1)

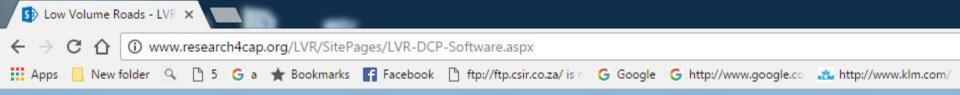
- UKaid from the British people
- Relatively low cost, robust apparatus that is quick and simple to use allowing comprehensive characterization of the in situ road conditions.
- Provides improved precision limits compared to the CBR test
- Very little damage is done to the pavement being tested (effectively non-destructive) and very useful information is obtained.
- The pavement is tested in the condition at which it performs and the test can be carried out in an identical manner both in the field and in the laboratory.

Summary of DCP Method-Strengths (2)

- The simplicity of test allows repeated testing to minimize errors and also to account for temporal effects.
- The laboratory DN value is determined over a depth of 150 mm and not just the top 25 – 50 mm as with the CBR test.
- The method is as good (or better) than any other method in taking into account variations in moisture content and provides data quickly for analysis.

CROWN AGENTS UK AIC From the British people

- Use in very coarse granular or lightly stabilized materials;
- Very hard cemented layers in the pavement structure;
- The possibility of not recording very weak or thin layers when taking depth measurements every 5 blows. (Possibility for measuring every blow usually effective);
- Poorly executed tests (hammer not falling the full distance, non-vertical DCP, excessive movement of the depth measuring rod, etc.);
- Changes to standard specifications and the associated bidding documents;
- As with all empirical methods, use outside the type of environment (materials, climate, traffic, etc.) in which it was developed.


Thank You !

Free AFCAP LVR-DCP Software From:

Home Page: <u>http://research4cap.org</u> GoTo: Resources --> Low Volume Roads DCP Software

Registration for LVR DCP Software and User Forum: http://research4cap.org/SitePages/LVRDCPSoftware.aspx

BROWSE PAGE

Home 🕜 EDIT LINKS

LVR-DCP-Software

T	0	100	-	
	U		е	

LVR Forum

LVR Members

Site Contents

EDIT LINKS

Download your copy of the LVR DCP Software

The AfCAP LVR DCP v1.00 Software and a software helpfile (SHF) are freely available for practitioners. Please follow the steps belo Please verify your system meets with the requirements to be able to download and run the software:

- Supported operating systems: Windows 7, 8 and 10
- AFCAP LVR-DCP requires a computer with the following minimum capabilities:
- 32-bit (x86) or 64-bit (x64) processors
- Dual-core, 2-GHz or faster processor
- 2 GB of RAM
- File is 28Mb approx.

How do I decompress the files I download from your site?

Our files are compressed using WinZip and have the .zip file suffix. Users who download compressed files will have to decompress

Windows

Windows XP and later have a built-in decompression tool that decompresses .zip files. Users with earlier Windows versions may r

