

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Nanotechnology in roads Summary of SAT workshop

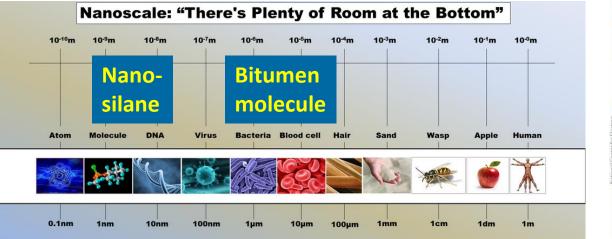
Prof Wynand JvdM Steyn HOD – Civil Engineering University of Pretoria

Summary of SAT workshop – March 2017

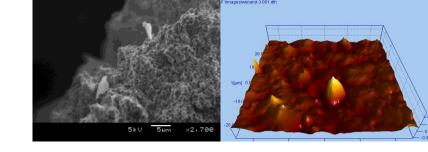
- Workshop programme and contributors
 - Introductory principles of nanotechnology/science/history
 - General application of nanotechnology across industries Nadine Govender
 - Principle of particle size consideration in road building / maintenance/deterioration - Dr Martin Mgangira CSIR
 - Applications of nanotechnology in the roads industry (including structures)
 - Mineralogy & nanotechnology Dr Verrein
 - Laboratory testing, methods and equipment Nico Herbst (Roadlab)
 - Implementation of nanotechnology in South Africa Prof Gerrit Jordaan
 - Implementation of nanotechnology in South Africa Herman Marais (Much Asphalt)
 - Implementation of nanotechnology in KZN Naidu Consulting
- Only brief summary

What are we talking about?

- Nano one billionth, 10⁻⁹, 0.00000001
- Nanotechnology
 - <u>design, construction & utilization</u> of <u>functional structures</u> with <u>at least one characteristic dimension</u> measured in <u>nanometers</u>
 - dimensions & tolerances of <100 nm, especially the manipulation of individual atoms and molecules
- Physical behavior of matter display substantial changes as size decreases to nanometer scale


Where did it start?

- There's Plenty of Room at the Bottom Richard Feynman (1959)
 - manipulate & control individual atoms and molecules
 - Why cannot we write the entire 24 volumes of the Encyclopaedia Brittanica on the head of a pin?

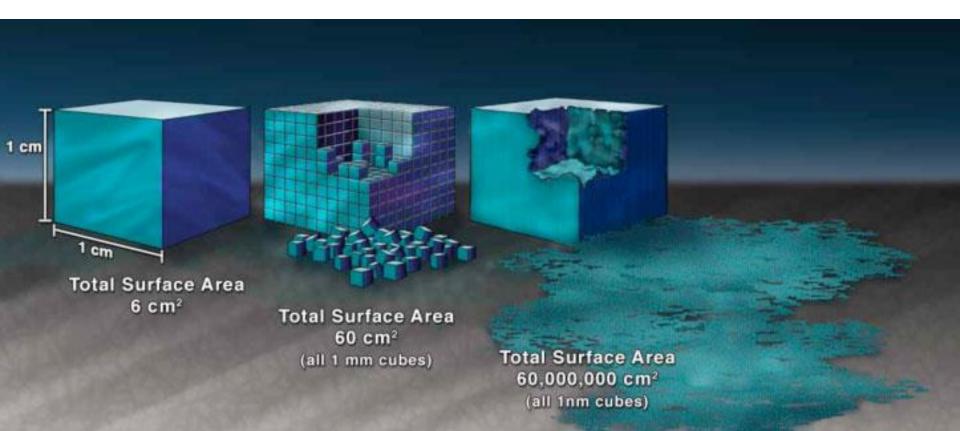

Scale

- Sheet of paper 100 000 nm
- Marble = 1 nm then Earth = 1 m
- Human hair 80 000 to 100 000 nm
- Single gold atom 0.3 nm
- Fingernail grows 1 nm in 1 second

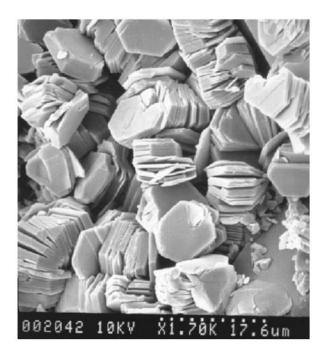
Seeing

- Since 1930s
 - Scanning Electron Microscope, Transmission Electron Microscope, Field Ion Microscope, Scanning Tunnelling Microscope, Atomic Force Microscope, etc.

1 500 x


Why is it special?

- Nanoscience / nanotechnology
 - ability to see & control individual atoms & molecules
- New tools understand & take advantage of phenomena that occur naturally when matter is organized at nanoscale
- Phenomena based on
 - quantum effects
 - expanded surface area
- Not simply working at ever smaller dimensions
 - enables <u>utilization of unique physical</u>, <u>chemical</u>, <u>mechanical</u>, <u>& optical</u>
 <u>properties</u> of materials that naturally occur at that scale



Why is it special – Surface area

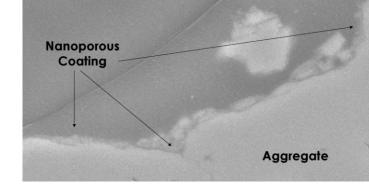
Surface area per mass of material increases, greater amount of material in contact with surrounding materials - affecting reactivity

Ever heard of clay?

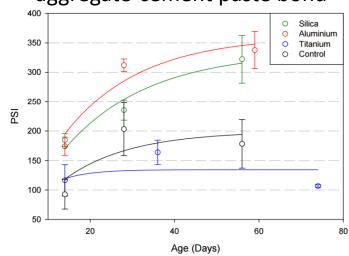
Problem statement for application of nanotechnology in pavement engineering

- Identify current needs that cannot be addressed effectively using current technology
- Identify potential nanotechnology solutions that may be applicable in pavement engineering field
- Marry two concepts to identify nanotechnology solutions with highest potential benefit/cost ratios & focus on specific developments in those fields

Fine


Fragment of old base

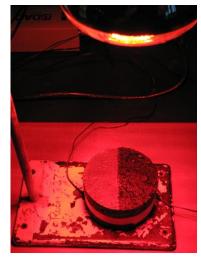
Some examples – not exhaustive



Aggregate - Thin films

- Thin films of nano-sized material deposited on surface of host material
 - change surface properties
 - improve bonds between aggregate & binder
 - prevent bonding between two materials
 - Know what you need / want to do!

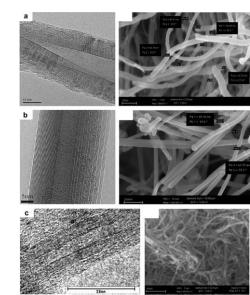
Thin film effect on aggregate-cement paste bond

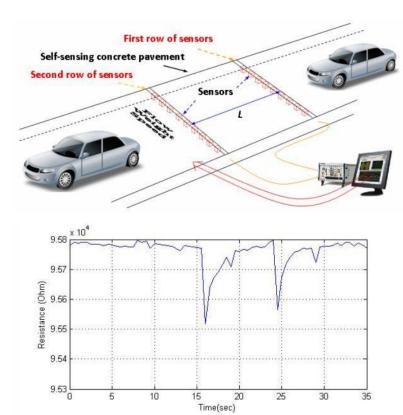


TiO_2 / ZnO

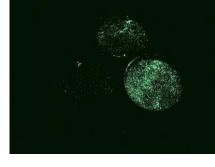
- Bitumen / Asphalt
 - Treatment against UV & ageing deterioration
 - Can affect bitumen ageing positively sunscreen
 - Effect on binder stiffness to be evaluated

Concrete


- TiO₂ photocatalytic activities
- Self-cleaning surfaces & removal of NO_x, SO_x, NH₃, CO pollution
- Triggered by naturally occurring UV light
- Application through use of concrete blocks / surfacing indicated localized decreases in NO_x


Cement / concrete - CNT

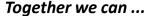
- Improvements in strength, environmental resistance, bonding
 - reinforcing concrete
 - increase
 - hydration rates & stronger bonds
 - compressive strength up to +70%
 - decreases
 - heat conductivity up to 12%
 - dispersion problems
 - does not corrode in corrosive environments


Sensors

- Sensors embedded in infrastructure
- Issues around bonding between sensors & matrix eliminated
- Application of CNTs in traffic monitoring
- Data transfer from sensor to DAQ still require work

Nano-phosphor

- Illumination of road pavements
 - nano-scale crystalline structures with size dependent bandgap that can be altered to change the color of light
 - road act as light source
 - not dependent on external power
 - can be added to traditional pavement materials (concrete, bitumen & road paint)

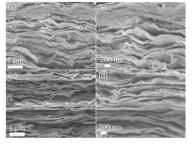

Concerns & Issues – Environment / Health & Safety

- Compatible to natural environment
- Minimize effects on natural environment
- Leaching into groundwater
- Release of materials into airways through of dust
- Exposure during construction & maintenance operations

SAT Eastern Region Workshop: Nanotechnology

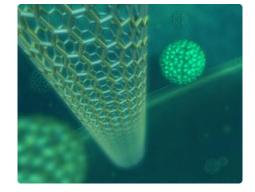
Nanotechnology in Asphalt Herman Marais

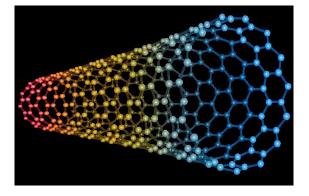
1 March 2017



Nanoclay

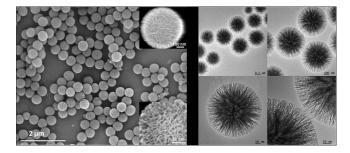
- Bitumen enhanced modified with small amounts of nano-clay
- Improved elasticity, low temperature rheological properties, rutting resistance, crack resistance


Together we can ...



Carbon Nanotubes (CNT)

- Very few studies
- Can significantly affect rheological properties
- Improved rutting resistance, thermal cracking resistance
- Reduced susceptibility to oxidative aging


Together we can ...

Nanosilica (NS)

- Low cost of production & high performance features
- Reduces binder viscosity, susceptibility to oxidative aging
- Improved rutting resistance, thermal cracking resistance, fatigue resistance, aggregate binder adhesion

Together we can ...

Together we can ...

Graphene Oxide (GO)

- Improve high temperature, anti-aging property
- Promote low temperature property of base bitumen
- CO₂ emissions during heating (above 115°C) could have WMA and fire retardant advantages

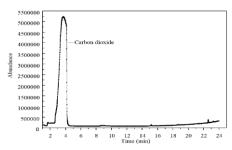


Figure 19. Gas chromatography of 3% GO-modified asphalt heated to 115 °C.

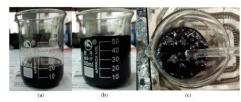
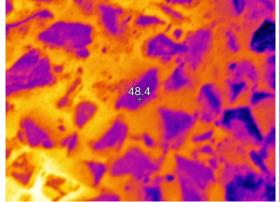


Figure 1. Boiling effect phenomenon. (a) Volume of 1% GO-modified asphalt before heating; (b) volum of 1% GO-modifed asphalt after heating; and (c) gas released.



Iron Nano particles

- Magnetic Iron Oxide Nano particles (MIONP)
- Similar to treating cancerous tumors (magnetic hyperthermia)
- Asphalt heated up in just a few seconds which "heals" micro-cracks
- Quite costly at present
- Test Steel Slag fines as cost effective alternative

Together we can ...

Nanotechnologies – Opportunities

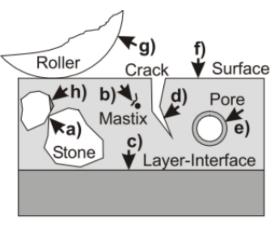
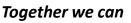


Figure 3. Schema to visualize focus areas for nanoscience and technology with respect to asphalt pavement structures:

- a) Bond between stones (shear and tension)
- b) Mastic (stiffening, cohesion, durability, compaction improvers)
- c) Bond between layers (tack coats)
- d) Self-repair (healing) and rejuvenating agents
- e) Oxidation of binder films and binder inhomogeneities
- f) Surface properties (friction, optical properties, water repellent, abrasion resistant, self-cleaning), sealcoats for surface protection
- g) Anti-adhesion surface for rollers during compaction
- h) Bond, adhesion between stone and mastic

Together we can ...


Zycotherm Grey Water Study Phase 2

GREY WATER ON MEW WAY

SITY OF PRETORIA
SITHI YA PRETORIA

Zycotherm Grey Water Study Phase 2

CONCLUSION

- Found that EVA modified mixtures with a combination of additives performed the best
- Clear benefit of adding 1% SASOBIT® as compaction agent
- Zycotherm Nano Technology showed improved resistance to Grey Water damage

Zycotherm - Adhesion Promoter

Boil Test	Percentage of retained Coating			
	Afton 10 min	After 1 hr	After 3	
(ASTM D 3625)	After 10 min	Aiter i nr	hr	
Neat mix	50%	30%	10%	
Modified mix	100%	95%	95%	

Together we can ...

Zycotherm - Bitumen Rubber

Before

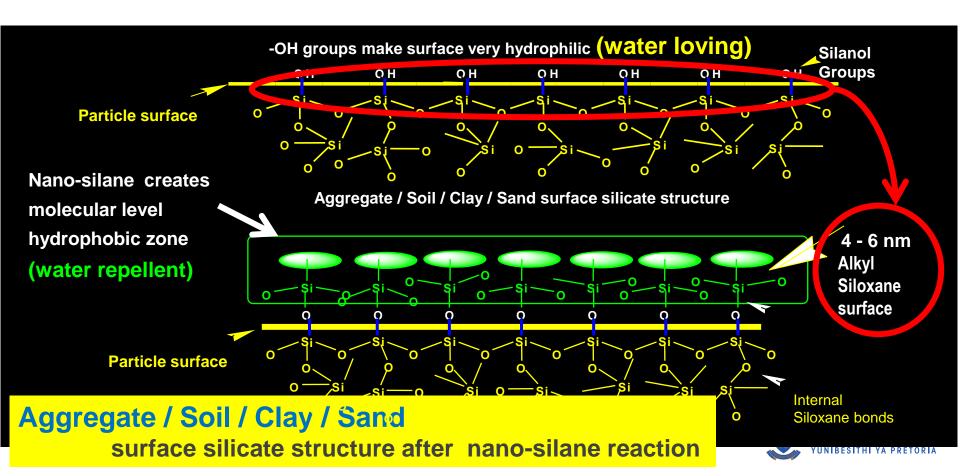
After

Together we can ...

Practical application of Nano-technology in roads in southern Africa

Prof. G. J. Jordaan, UP

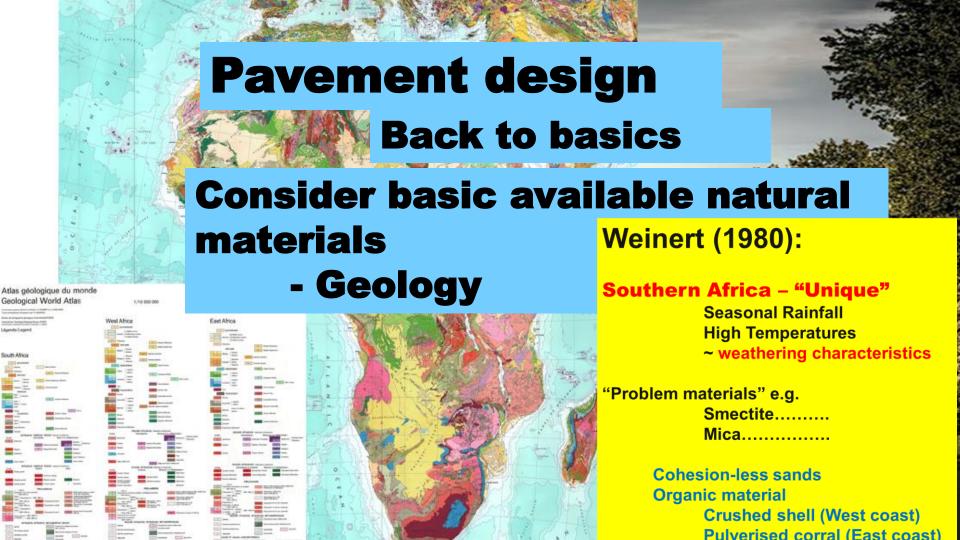
Mr. A. Kilian, GPDRT, SA

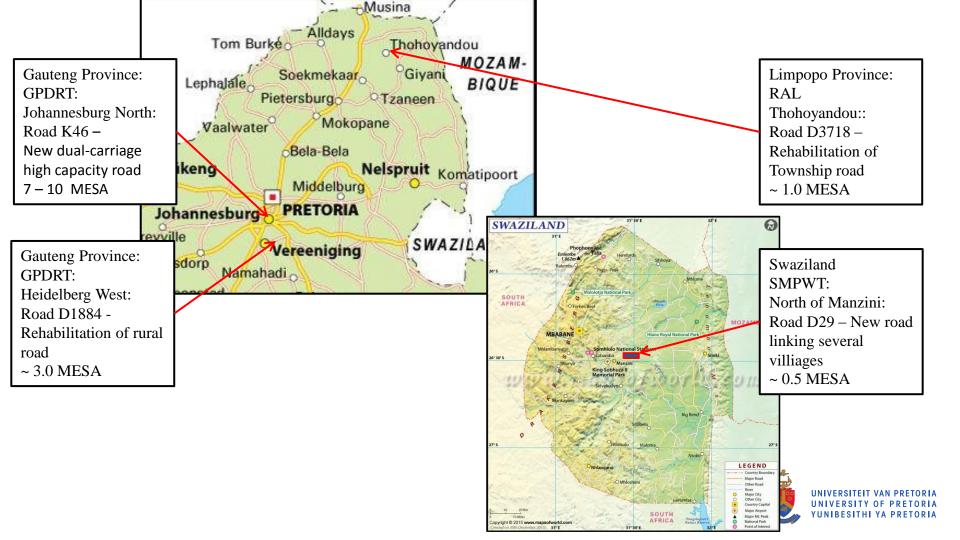


Mr. N. Muthivelli, RAL, SA

Mr. D. Dlamini, MPW & T, Swaziland

THE "free energy" ACTION





Nano –
"waterproofing"
Agent added

Normal Stabilising agent

2014 11 11

D1884 Gauteng – Rehabilitation (G7)

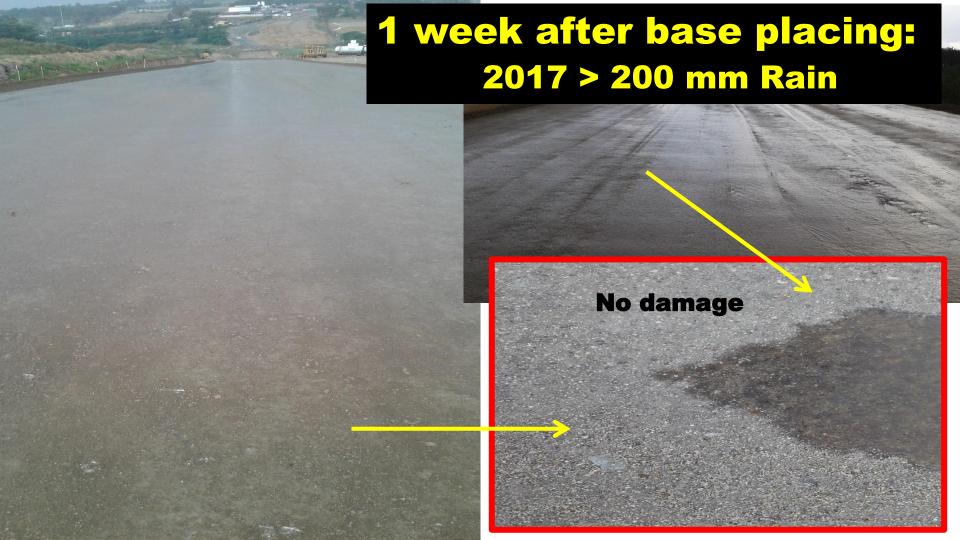
Formula	UCS(dry)	UCS(wet)	UCSw/UCSd %
0.7% GE-NANO P	2 269	2 139	94%
0.7% GE-NANO P	2 173	2 093	96%
AVE (kPa)	2 221	2 116	95%

CAN A	Formula	ITS(dry)	ITS(wet)	ITSw/ITSd %
A	1.2% GE-NANO P	383	142	37%
0.00000	1.2% GE-NANO P	391	124	32%
	AVE (kPa)	387	133	34%

K46 - William Nicol - Dual carriageway

Design traffic loading: 7 - 10 MESA

Base: 150 mm G5 - 1.2% GE-Nano Sub-base: 150 mm G5 - 0.7% GE-Nano



Sub-base condition 25 February 2017

Rain Dec 2016: >100 mm

Challenge

- How to actively establish link between using benefits that nanotechnology offer & improved understanding & application of materials science into improvements of transportation infrastructure
- Important
 - Focuses on improving our knowledge & management of available resources
 - Nanotechnology does not replace good engineering

- Analogy blood samples
 - Small amount of blood (0.01%) test for correct parameters identify illness and cure with appropriate medicine
 - No blood sample required to fix a broken leg or tell you that smoking is bad for your health