

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Accessibility Index to Public Facilities for Prioritisation of Community Access Road Development

Fhatuwani L. Nemvumoni

15 November 2017

Fakulteit Ingenieurswese • Faculty of Engineering

There is a need for a socio-economic ranking tool that:

- **Quantifies** social benefits
- Includes measurable variables for social facilities such as educational, healthcare and law enforcement
- Identify the influence potential developments may have on access to these facilities
- Benefits the community directly
- Compatible to various types of areas (rural, peri-urban & urban)

Objective:

Develop and test model of ranking road development projects, with perspective of increasing accessibility to basic public facilities.

Ranking Method Must:

- Simpler data capturing method (no specialised skills or equipment)
- Method must be affordable

The model must be:

- Systematic
- Measureable
- Robust

Figure 2.1. Components of accessibility (Hajj & Pendakur, 2000).

The Model Facility quality

Facili			-		
lic Schools	Option 1	Doctor visitation	Waiting time	Notice	Accessibility Siting &
		Once a month	Less than 2 hours	1101 go	Mobility quality of facilities
Pub	Mark selection				- Travel Mode
Clinics	Option 2	Doctor visitation	Waiting time	Not go	Infrastructure
		Twice a week	More than 2 hours	the go	
	Mark selection				
	Option 3	Doctor visitation	Waiting time	Not go	
		Once a week	More than 2 hours		
4	Mark selection				

Attribute	Levels
	30 minutes
Walking time	l hour
	2 hours
	R5
Public	R10
transport cost	R15

	Path type	User	Traffic volume	Path width (m)		
	One-way footpath	Pedestrians	< 50/day	1.0		
	Two-way footpath	Pedestrians	> 500/day	1.2		
	One-way bicycle track	Bicycles	< 50/day	1.2		
,	One-way track	Pedestrians Pack- animals	< 500/day	1.4		
	(I.T.Transport Ltd, 2002).					

SPEED

- Functional assessment of road
- Correlation with road roughness (IRI)
- According to Sayers *et al.* (1986):

Class 4 - "subjective ratings and uncalibrated measures".

• Tool: handheld GPS

WIDTH

- Road safety
- Non-motorised transport modes in rural areas normally travel on the shoulder of the road
- Tool: measuring wheel

$AI_w(k) = (1 - AI_{ij}(k)) \times POPG_j(k) \times INVST_{POPG}$

Where

- $AI_w(k)$ = Weighted accessibility index in Rands
- $POPG_j(k)$ = The number of persons who go to facility k using transport mode j from the subject village
- $INVST_{POPG}$ = Average investment per capita made by the relevant facility, *k*, government department in the financial year

Weighted accessibility index represents that amount of investment made by government that is not being utilised efficiently

School Quality (y = ATTEND)					
Intercept -0.62					
	Income group	-0.49			
Variables'	Class size	-0.05			
Coefficients	Available text books	+6.80			

Quality characteristics

- High income decreases preference to attend the school
- Large class sizes decrease
- Availability increases preference

Mode of transport to school (y = USE PT)					
	Intercept	0.92			
	Students in household	-4.68			
	Female students in high school	+5.19			
	Female students in primary school	+4.55			
Variables'	Male students in primary	+3.93			
Coefficients	Male students in high school	+3.60			
	Income group	-0.56			
	Walking time	+0.05			
	Cost of public transport	-0.13			

Transport characteristics

- Less preference to public transport with increasing number of students
- Households with more female students prefer public transport more
- Higher income decreases preference to public transport

Clinic Quality (y = USE)			Mode of transport Clinic (y = USE PT)		
Intercept +2.63			Intercept		-1.67
Variables	Frequency of doctor visits	-0.08	Variables	Walking time	+0.05
	Waiting time	-0.05		PT cost	-0.13

Quality characteristics

- More doctor visitations increases preference
- Long waiting times decrease preference

Transport characteristics

- Longer walking times increases preference to use PT
- High PT cost decrease preference to use PT

NEITHER PREFERENCE DEPENDS ON HOUSEHOLD CHARACTERISTICS

Property	Mangwele Primary School	Ramabulana Secondary School	Tshianane Secondary School	Sane Combined School
Travel distance from Mangwele(km) (Percentage walking)	0.3 (100%)	l 2.86 (0%)	16.93 (20%)	6.32 (100%)
Travel distance from Sane(km) (Percentage walking)	No attendees	6.84 (100%)	10.91 (75%)	0.35 (100%)
Average class size (learners)	-	36.6	28.9	24
Average textbook availability	-	100%	85%	50%

Results Model Validation – Mangwele & Sane health care survey summary

Property	Mangwele	Sane
Average household size	4.6	5.4
Clinic	Straight Hardt Clinic	Straight Hardt Clinic
Travel distance (km)	12.8	6.8
Estimated walking time (minutes)	154	82
Public transport cost	R10.58	R10.00
Average waiting time (minutes)	149	112
Straight Hardt doctor visitation frequency	3 times a week	3 times a week

Mangwele reported longer waiting times

- Earth Road
- Average speed 30km/h
- Average width 5.5

- Mostly surfaced
- Average speed 30 km/h
- Average width 5.8 m

LINK 3

- Surfaced
- Average speed 27 km/h
- Average width 6 m

- Gravel
- Average speed 50 km/h
- Average width 7.5 m

- Handheld GPS records travelling speed at different "legs"
- Speeds recorded in three phases
- Cumulative differences used to determine homogenous segments from the recorded legs
- Road width measured at random points of notably change

Phase	Number of legs	Average Leg length (m)	Average Leg time interval (seconds)	Maximum Leg time interval (seconds)	Minimum Leg time interval (seconds)
Phase I	257	44.11	6	16	I.
Phase 2	24	46.63	7	13	I.
Phase 3	43	116.37	9	16	I.

Facility	2014 Budget	Investment per Capita (INSVT _{POPG})
Basic education	R177 billion	R14 607.56
Public health care	R77 billion	R2 350.60

 $AI_w(k) = (1 - AI_{ij}(k)) \times POPG_j(k) \times INVST_{POPG}$

Project	Road Links	Project Length (km)	Community benefactors
Project I	I	6.01	Mangwele
Project 2	Ι, 2, 3	12.46	Mangwele & Sane
Project 3	I, 2, 4	16.34	Mangwele & Sane
Project 4	1, 2, 3, 4	17.46	Mangwele & Sane
Project 5	2, 3	6.44	Mangwele & Mainly Sane
Project 6	2,4	10.33	Mangwele & Mainly Sane
Project 7	2, 3, 4	11.45	Mangwele & Mainly Sane

Works	Cost per m ²
Earth to gravel	R35.00
Surfacing to gravel	R50.00
Extend shoulder width (SW)	R35.00

Contribution to savings according to mode of transport

- It is possible to measure social parameters and apply them in a model to yield unbiased outcomes
- Quality of infrastructure can be estimated robustly, using indirect parameters e.g. comfortable speed versus IRI
- Data gathering survey can be reduced by visiting facilities for information and using STATS SA
- Ranking from model provided realistic outcomes
- MODEL PROVIDES SOCIO-ECONOMICALLY BASED PRIORITISATION METHODS FOR ACCESS ROADS IN RURAL/PERI-URBAN/URBAN COMMUNITIES

- Model can be calibrated for selected areas with different community profiles
- More facilities can be added according to NDP, besides the current schools and clinics
- Model can be used for improved decision making beyond prioritisation of road infrastructure

THANK YOU

ANY QUESTIONS?

 $Q_{L,MT} = lesser of \qquad \frac{\sum_{s=0}^{n} \left(\binom{V_{s,avg}}{V_{s,cl}} \times L_{s} \right)}{L_{P}} or \qquad \frac{\sum_{s=0}^{n} \left(\binom{W_{s,avg}}{W_{s,cl}} \times L_{s} \right)}{L_{P}}$

Where

 $Q_{L,MT}$ = Quality of link using motorised transport mode $V_{s,avg}$ = Average measured speed over road link segment s $V_{s,cl}$ = Average classification speed of road link segment s L_{s} =Length of segment s L_{R} = Length of road link R $W_{s,avg}$ = Measured cross-sectional width of road link segment s

 $W_{s,cl}$ = Average classification width of road link segment s

 $\boldsymbol{Q}_{L,NMT} = \frac{\sum_{s=0}^{n} \left(\left(\frac{SW_{s,avg}}{SW_{s,cl}} \right) \times L_{S} \right)}{L_{R}}$

where

 $Q_{L,NMT}$ = Quality of link using non-motorised transport modes $SW_{s,avg}$ = Average measured shoulder width of road link segment *s* $SW_{s,cl}$ = Average classification shoulder width of road link segment *s* for relevant transport mode.

 L_S =Length of segment s

 L_R = Length of road link R