

GLASS ASPHALT DEVELOPMENT

ROAD PAVEMENTS FORUM THIRTY-FOURTH MEETING CSIR International Convention Centre, Pretoria, Gauteng

14 & 15 November 2017

Joseph A Boateng CSIR Built Environment

Acknowledgements

FUNDING FOR THE STUDY WAS PROVIDED BY THE CSIR R&D OFFICE

- CONSOL GLASS
- MUCH ASPHALT

<u>Core Team</u> Joseph A Boateng, PI Theresa George, Researcher

Background: Waste glass generated in SA (2011)

our future through science

Background: Waste glass generated in SA

- CONSOL GLASS recycles **13 000 t** crushed glass per month
 - **3 000 t**, representing glass < 5 mm, is considered as waste
- Substantial quantity of waste glass is available for exploitation in SA...!

Background: Need for waste glass asphalt..???

CSIR BE: Develop asphalt mix that utilises waste crushed glass as aggregate replacement

Eight aggregate quarries in GP

our future through science

Benefits of glass in asphalt

- **Glass is reflectiveness** assist with improving visibility under lights
- Water- resistant roads drying faster after rainfall thereby improving safety
- Crushed glass can be used to reduce the amount of bitumen the most expensive component – reducing the cost of road construction
- Glass is **recyclable and biodegradable**
- Can be easily sourced, as significant amounts are readily available at South African landfills
- Crushed glass' low density means that it provides more volume per tonne

Waste glass utilisation in roads

• UK

Initial costs

Alternative Materials								
Glass Slag						RAP		
COST OF MATERIAL/TON								
Delivered Price (C _{DP})		R 200.00			R 300.00		R 270.00 + *Testing	
Price of Raw Material (P_{RN}	(h	R 0.00			R 140.00		R 0.00	
Cost of Processing the Mate	erial (Cpr)	R 0.00			Included in P_{RM}		R 90.00+ *Testing	
Cost of Stockpiling the Mat	erial (C _{ST})	R 0.00			Included in P _{RM}		R 0.00	
Cost of Loading the Materia	ul (C _{LD})	R 7	0.00		Included in P_R	M R 20.0		0
Cost of Transporting the Ma	aterial	P 13	B120.00		B 160.00		B 160.00	
(C _{TR})		KI.	50.00		K 100.00		K 100.00	
Virgin Materials								
	Andesite		Andesite	C	Andesite Gran		nite	Mine Sand
(9.5 mm)		ı)	(6./mm)		Crusher Dust)	(Crusher Sand)		
COST OF MATERIAL/ION								D A 40,00
Delivered Price (CDP)	R 330.00		R 330.00	1	R 355.00	R 340.0	0	R 340.00
Price of Raw Material (P _{RM})	R 170.00		R 170.00		R 195.00	R 180.0	0	R 180.00
Cost of Processing the	Included in	ı	Included in]	Included in	Included in		Included in
Material (CPR)	P _{RM}		P _{RM}]	P _{RM}	P _{RM}		P _{RM}
Cost of Stockpiling the	Included in		Included in	1	Included in	Included in		Included in
Material (C _{ST})	P _{RM}		P _{RM}]	P _{RM}	P _{RM}		P _{RM}
Cost of Loading the	Included in		Included in]	Included in	Included in		Included in
Material (C _{LD})	P _{RM}		P _{RM}]	P _{RM}	P _{RM}		P _{RM}
Cost of Transporting the Material (C _{TR})	R 160.00		R 160.00]	R 160.00	R 160.0	0	R 160.00
Profit (P)	-		-	-	-	-		-

*Cost of additional testing prior to processing (binder recovery, penetration and softening point)

Glass Asphalt Mix

- Design of hot mix asphalt that utilises a waste crushed glass (< 5 mm) as a substitute material to a conventional aggregate (crushed sand)
- Reference mix
 - 13.2 mm medium dense-graded
 - 50/70 pen grade binder
- Mix design method (Sabita Manual 35, 2016)
- Mix performance-related /engineering properties
 - durability
 - Stiffness
 - Permanent deformation
 - Fatigue cracking

Glass Asphalt Mix

Reference Asphalt Mix

Aggregate grading & properties

Aggregate Property	Aggregate Type	Andesite 9.5 mm	Andesite 6.7 mm	Andesite Crusher Dust	Granite Crusher Sand	Mine Sand	Waste Crushed Glass	Hydr ated lime
	19.0mm	100	100	100	100	100	100	100
	13.2mm	100	100	100	100	100	100	100
	9.5mm	91	100	100	100	100	100	100
	6.7mm	26	86	99	100	100	100	100
hg	4.75mm	4	34	98	99	100	100	100
adi	2.36mm	1	3	61	70	100	91	100
Gra	1.18mm	1	2	37	45	100	50	100
	0.6mm	1	2	23	25	99	23	100
	0.3mm	1	2	16	13	82	11	100
	0.15mm	1	2	11	5	34	5	100
	0.075mm	0.4	1.4	8.3	1,5	8.1	2.8	99
ity	Bulk Relative Density	2.884	2.887	2.816	2.628	2.600	2.489	2.861
Dens	Apparent Relative Density	2.919	2.928	2.956	2.676	2.634	2.519	
	Absorption	0.4	0.5	1.7	0.7	0.5	0.5	
Sand Equivalent	Criteria ≥ 50	N/A	N/A	69	77	56	74	
FAA	Criteria of 45 min, 30 M E80	N/A	N/A	39.7	38.3	48.3	51.3	

Aggregate Grading & Properties

12

X-Ray Diffraction (XRD) analysis

Glass Cullet Fraction (mm)	Crystalline Silica (Quartz) (%)	Amorphous Silica (Glass) (%)
-0.075	10.56	89.05
0.075	10.21	89.62
0.150	9.39	87.51
0.300	12.02	90.59
0.425	9.39	95.08
0.600	3.13	96.71
1.180	1.82	97.94
2.360	1.40	98.60

Mix proportions & design grading

Nominal size (mm)	Aggregate Type	Reference Mix Proportion	Glass Mix Proportion	Sieve Size (mm)	Ref. Mix Design Grading (% Passing)	Glass Mix Design Grading (% Passing)
9.5	Andesite	21%	31%	13.2	100	100
6.7	Andesite	24%	16%	9.5	97	97
Crusher dust	Andesite	26%	18%	6.7	75	75
Crusher Sand	Granite	25%	10%	4.75	59	59
Mine Sand	Mine Sand	3%	7%	2.36	42	42
Crushed Glass	Glass		15%	1.18	30	29
Filler	Mineral Filler	1%		0.6	21	21
Filler	Hydrated Lime		3%	0.3	14	15
				0.15	9	9
				0.075	5.8	6.0

OBC: Glass = 5.1%; Ref = 5.0%

Mix Design: Design Grading

our future through science

Durability (Stripping potential)

Characteristic	Glass As	phalt	Reference Asphalt		
	Wet Subset	Dry Subset	Wet Subset	Dry Subset	
Tensile Strength	721 kPa	845 kPa	808 kPa	946 kPa	
TSR	0.85 > 0	.80	0.85		
Visual moisture damage	No moisture, minor stripping	No moisture, minor stripping	No moisture, minor stripping	No moisture, minor stripping	
Cracked / broken aggregates	None	None	None	None	

Scanning electron microscopy (SEM)

Asphalt mix without waste glass

(Analysis conducted at National Metrology Institute of South Africa (NMISA))

Stiffness

Flow number (Rutting potential)

Fatigue cracking resistance

our future through science

Summary

Economical, Environmental & Performance benefits

Roadmap

Finalise glass asphalt mix design Develop glass asphalt design guideline Construct demonstration sections; cost benefit analysis

ENGINEERING NEWS

CSIR investigates road applications for waste materials

25th November 2016

Photo by Duane Daws

By: Nadine James Journalist

THE BUS STOPS HERE Transport systems depend on the quality and sustainability of the associated infrastructure, therefore government has to invest in infrastructure to increase mobility and grow the economy

