REC MAT Update

RPF 9 May 2018 Ian Bowker

RecMat Committee

- Committee formed on resolution of RPF May 2016
- Focus on the use of recovered building materials and concrete as pavement construction materials
- Aim to compile a Best Practice guideline for the use of recovered materials in roads
- Being based on research (Dutch and local) and inputs from industry.

RecMat Committee

Current

- Self-Cementing Mechanisms in Recycled Concrete and Masonry for Road Materials. PhD in Civil Engineering
- Durability and Performance Evaluation of South African Recycled Mixed Granulates in Unbound Pavement Layers. MEng at Delft University of Technology
- The use of Recycled Concrete Aggregate in BSM's. MEng (Research)

Complete

- Modelling the Shrinkage Behaviour of Recycled Concrete Aggregate and Cement Stabilised Materials. MEng (Research), March 2018
- Carbonation of Cement Stabilised Materials in Pavement Layers. MEng (Research), March 2018
- The Performance Properties of Recycled Concrete in Road Pavement Materials. MEng (Research) March 2018
- The Use of Chemical and Strength Tests for Evaluating the Self-cementing Action of Recycled Concrete Aggregate. MEng (Structured), March 2017
- Comparative Shrinkage Properties of Pavement Materials Including Recycled Concrete Aggregates With and Without Cement Stabilisation. MEng (Research). March 2016
- The Influence Of Self Cementation In Recycled Concrete For Road Pavement Materials. MEng (Structured), December 2015
- Material characterisation and response modelling of Recycled Concrete and Masonry in Pavement Layers. MEng (Research), March 2014

Document contents

CHAP	TER 1	INTRODUCTION1	
1.1	INTROD	UCTION1	
1.2	ALIGNMENT WITH RELEVANT BODIES AND DOCUMENTS1		
1.3	BACKGROUND1		
1.4	PURPOS	E OF THIS GUIDELINE	
CHAP	TER 2	APPLICABLE LEGISLATION AND LEGAL REQUIREMENTS	
2.1	INTROD	UCTION	
2.2	DEFINIT	IONS	
2.3	BUILDEF	S'S RUBBLE - MATERIAL STREAMS FOR THE PURPOSE OF ROAD CONSTRUCTION	
2.4	LEGISLA	TION AND POLICY – ENABLING A SECONDARY MATERIAL ECONOMY	
2.5	CONSTRU	CTION WASTE PROCESS FLOW AND WASTE LEGISLATION	
2.6	LEGAL REQUIREMENTS ON PROCESSING SECONDARY MATERIALS		
2.7	THE CITY OF CAPE TOWN'S INTEGRATED WASTE MANAGEMENT BY-LAW9		
2.8	CONSTR	UCTION AND DEMOLITION INDUSTRY9	
2.9	CRUSHI	NG INDUSTRY9	
CHAP	TER 3	SELECTION AND PROCESSING 10	
3.1	INTROD	UCTION	
CHAF	TER 4	MATERIAL SPECIFICATION GUIDELINES (ROADS) 11	
4.1	INTROD	UCTION	
4.2	DEFININ	IG RCA AND RMA AGGREGATES15	
4.3	APPLICA	TIONS OF RCA AND RMA	
4.4	MATERIAL PROPERTIES FOR RCA		
4.5	MATERIAL PROPERTIES FOR RCA AND RMA16		
4.6	DURABILITY OF RCA AND RMA USED IN ROAD CONSTRUCTION		
4.7	FIELD R	EQUIREMENTS FOR RCA AND RMA16	
CHAP	TER 5	MATERIAL SPECIFICATION GUIDELINES (CONCRETE)	
5.1	INTROD	UCTION	
CHAF	TER 6	GUIDELINES FOR CONSTRUCTION 18	
6.1	INTROD	UCTION	
CHAP	TER 7	REFERENCES	

Material Specifications (Ch.4)

- Based on new COTO document specs, all reclaimed materials must meet the COTO specs for the G or C-grading it is being proposed for
- Additional composition specs being recommended
- Additional durability specs being recommended

Material specs: Composition

Table 4-3: Limitations on the concrete and masonry content for a given G-Class material.

Material Class	Concrete Content (%)	Masonry Content (%)
G4	100	0
G5(a)	80-100	0-20
G5(b)	65-100	0-35
G6	65-100	0-35
G7	65-100	0-35
G8	65-100	0-35
G9	50-100	0-50
G10	50-100	0-50

Table 4-4: Reclaimed concrete and masonry contents applicable to cement stabilised materials.

Material Class	Concrete Content (%)	Masonry Content (%)	Material before treatment
C3 or higher	80-100	0-20	G5(a)
C4	80-100	0-20	G5(b) & G6

Material specs: Composition

Table 4-1: Reclaimed concrete granulates constituent limits (CROW, 1995).

Reclaimed Concrete Granulates			
Constituents		Description	Limit (% mass/mass)
Main	Α	Crushed gravel concrete and crushed-stone concrete, with a particle density of at least 2100 kg/m ³	A + B ≥ 80
Main	В	Other crushed stone material and stony material, with a particle density of at least 2100 kg/m ³	B ≤ 10
Secondary	С	Crushed masonry with a particle density of at least 1600 km/m ³ and other crushed stony material (light weight concrete, glass, slag, etc.)	C + D ≤ 10 D ≤ 5
Impurities	E	Gypsum and non-stony material ((non)-ferro metal, plastics, rubbers, polystyrene, etc.)	E ≤ 1
Impundes	F	Decomposed organic material (wood, rope, paper, plants, remains, etc.)	F ≤ 0.1

Table 4-2: Mix granulates constituent limits (CROW, 1995).

RCA and RMA – Reclaimed Concrete and Masonry Aggregate			
Constituents		Description	Limit (% mass/mass)
	Α	Crushed gravel concrete or crushed-stone concrete, with a particle density of at least 2100 kg/m ³	A+B ≥ 50
Main	В	Other crushed stone and stony material, with a particle density of at least 2100 kg/m ³	A ≥ 45
	С	Crushed masonry, other crushed stone and stony material, with a particle density of at least 1600 kg/m ³	C ≤ 50
Secondary	D	Other crushed stone and stony material (light weight concrete, glass, slag, etc.)	D + E ≤ 10
	E	Crushed asphalt	EZD
T	F	Gypsum and non-stony material ((non)-ferro metal, plastics, rubbers, polystyrene, etc.)	F ≤ 1
Impurities	G	Decomposed organic material (wood, rope, paper, plants, remains, etc.)	G ≤ 0.1

Material specs: Suitability

Material Class	Suitability	Traffic Volume
G4	- Unbound base layer	Low
G5(a)	- Unbound base layer	Low
(a)	 Bound subbase layer (C3 or higher) 	High
CF(b)	 Unbound base layer 	Low
G3(D)	- Bound subbase layer (C4)	Low
C6	- Unbound base layer	Low
	- Bound subbase layer (C4)	Low
G7	- Selected material	-
G8	- Selected material	-
G9	- Selected material	-
G10	- Fill material	-

Material specs: Composition

- For a G5(a), max 20% Masonry, but 20% of what?
 - 20% by mass?
 - 20% by volume?
 - What fraction sizes? > 2mm? >5mm? >7.1mm?
- Netherlands visually sort and weigh material retained on 7.1mm sieve only. Good enough?
- New reliable SA test method to determine % masonry is required.
- Current suggestion is everything retained on 5mm and above is sorted and weighed. Practical?

Material specs: Durability

- Questions remain around the durability and variable quality of clay masonry.
- Also durability specs are material dependant (e.g. DMI) and Reclaimed materials will consist of various material
- Suggesting that all reclaimed materials go through DMI and 10% FACT wet (SANS 3001 AG-10)
- DMI: Reclaimed materials must meet < 35% passing 0.475mm sieve spec
- Reclaimed materials must have \geq 10% FACT wet value than the alternative proposed commercial source.
- Suggestions/comments on durability?

Request for information

 The committee would love to get any information and test results of materials used in projects or up coming projects to form a data base and help with the formation of proposed specs.

 Info to <u>ian.bowker@capetown.gov.za</u> or <u>kirsten@green-cape.co.za</u>

Thank you