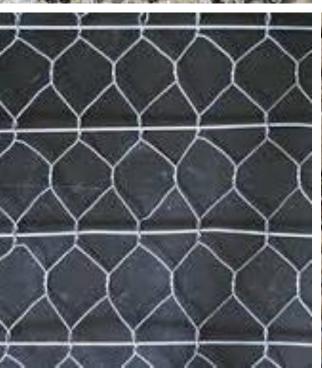
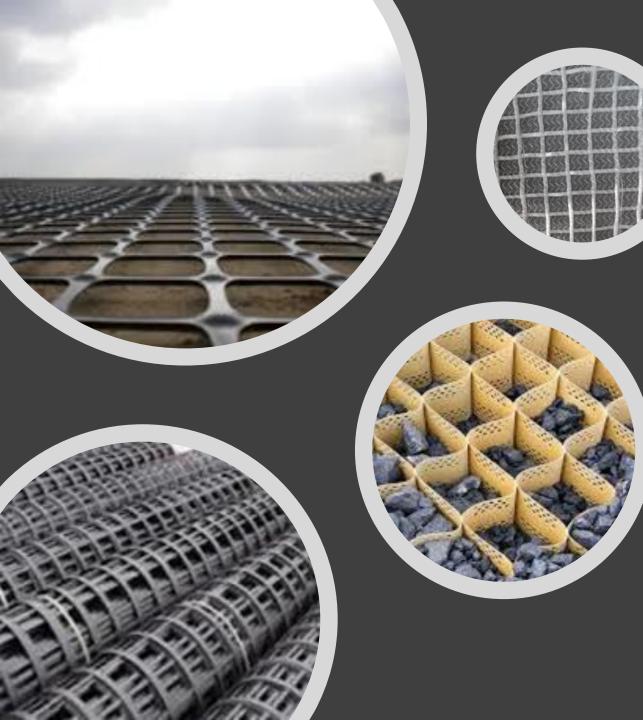
TG3 Working Group

The use of Geosynthetics

in Road Pavements

RPF November 2018


Arno Hefer



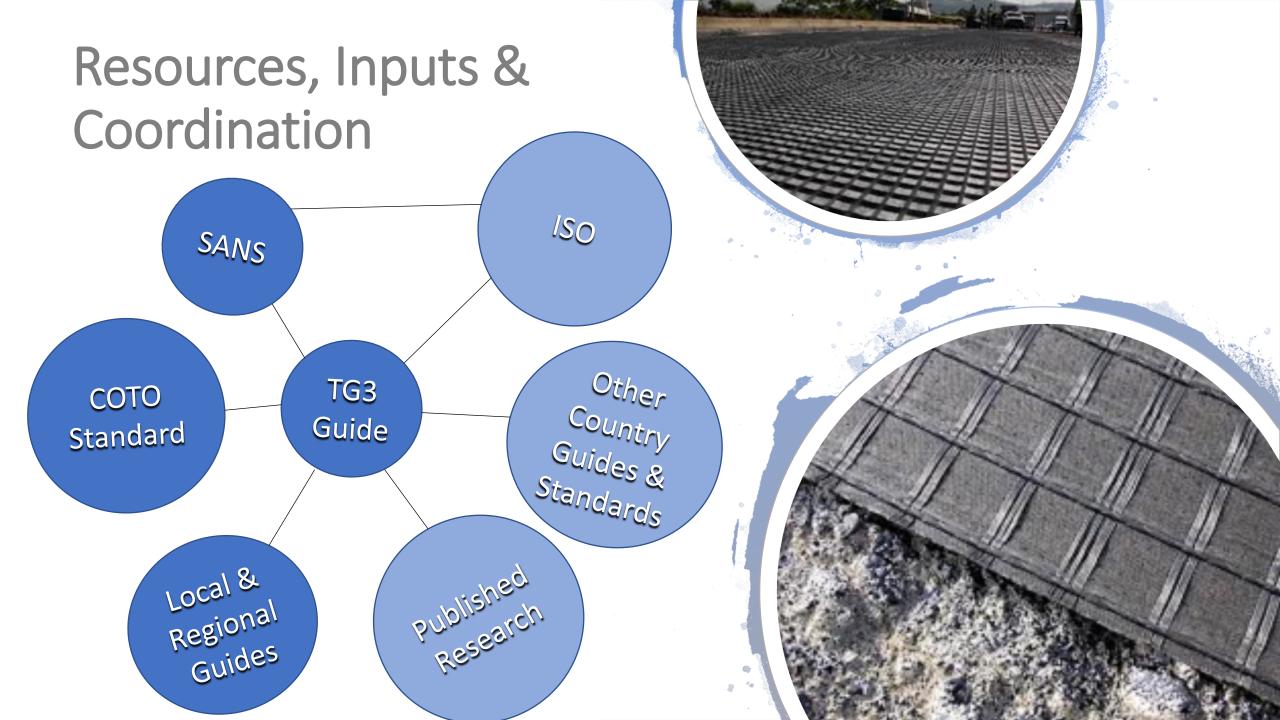
Summary of Objectives

- Update TG3 (Asphalt Academy, 2008) Asphalt Reinforcement for Road Construction
- Expand to all pavement components
- Compile best practice guideline; international and regional experience

Work Packages

• WP1: Introduction (Philip Joubert)

• WP2: Design (Arno Hefer)


• WP3:

Product Type, Selection & Specification (Colin Gewanlal)

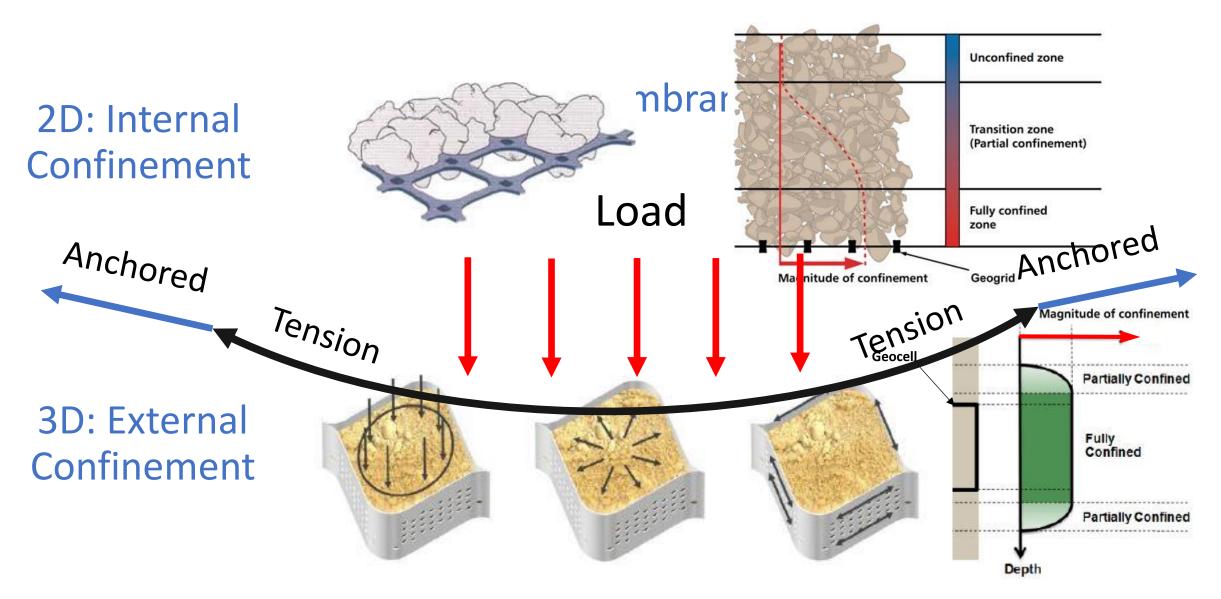
• WP4:

Construction & Quality Control (Christian Mulol)

TG 3 Guideline Document																			
Project Timeline - High Level		2018					2019												
Description/ Details	July	Aug	Sep	Oct	Nov	Dec		Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
1 WP1 Introduction																			
Background		1	1																
How to use TG3		1	1	1											1				
Technical considerations				1	1	1		1	1	1	1								
Life Cycle Considerations										1	1	1	1	1					
2 WP2 Design		_										-		-			-		-
Introduction		1	1																
Design phylosophy		1	1	1	1	1													
Dessign process				1	1	1											1	1	1
Categorsation and selection of design methods				1		1											1		1
Structural design								1		1	1	1	1	1					
Empirrical knowledge base methods											1	1	1	1					
Generalised empirical methods													1	1	1	1			
Mechanistic-based methods															1	1	1	1	1
3 WP3 Product Type, Selection, & Specifications					_		.,			-			_	1	-		1	_	
Introduction		1	1																
Asphalt reinforcing and paving fabrics						1													
Geogrids						1													
Steelmesh						1													
Geocells				1	1	1		1	1	-	1								
Compsites						1													
Summary																			
Specifications																			
4 WP4 Construction and Quality Control							ľ '												
Construction		1	1	1	1	1													
Asphalt reinforcing and paving fabrics						1		1	1	1	1								
Geogrids				1	1	1		1	1	1	1								
Steelmesh						1													
Geocells						1													
Compsites				1	1	1		1	1	1	1								
Quality control		İ –							1	1	1	1	1	1	1				İ
5 WP5 Implementation																			

Global Development & Status

- Technology matured
- Now commonly accepted
- Typically 3 5% of total project cost
- Savings of 30% in total project cost
- Risk up +100% of total project cost
- Adequate standards for geosynthetics lacking or non-existent
- ISO/TC 221: Suite of standards major functions and applications (Ref. ISO/TC 221 N408)



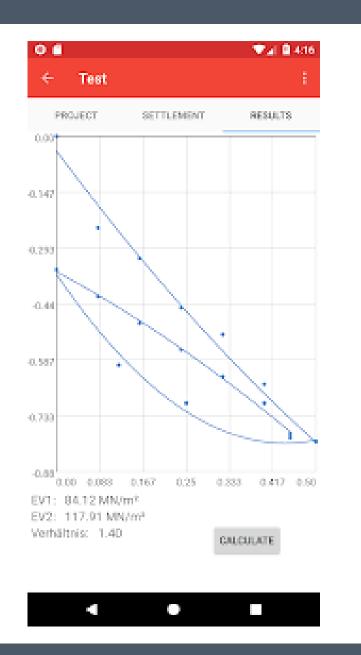
Relevant ISO Standard Developments

- Asphalt layers: ISO TC 221/WG6/PG10 Design Using Geosynthetics: Part 10 – Asphalt overlays (Working Draft stage)
- Granular layers: ISO TC 221/WG6/PG05
 Design Using Geosynthetics: Part 05 Stabilisation (Working Draft stage)

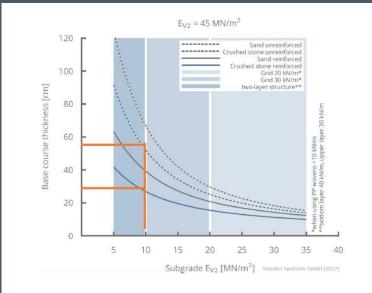
Mechanisms: Granular Layers

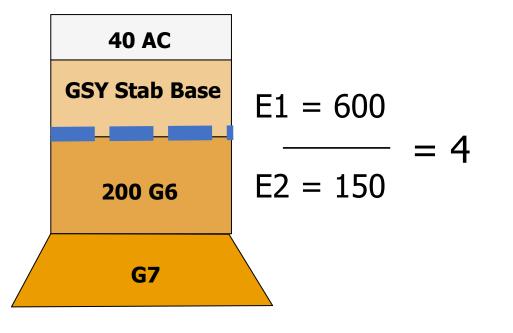
Evidence of Benefits - Design?

- "As yet it is impossible to include a generic product characteristic in any of these methods to represent the stabilising effect.."
- ".. they are limited to the use of a certain product..."

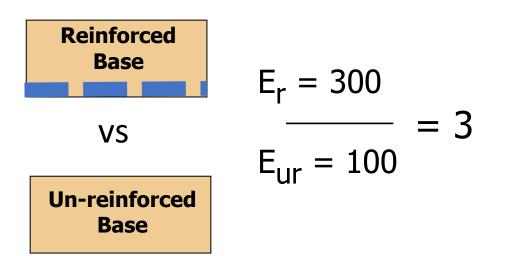

Visit to Germany

- Dr Arash Lavasan Ruhr-Universität Bochum
- European approach to Design Asphalt, base, subbase, subgrade reinforcement
- Standards: German, Swiss, Dutch
- FEM?





E _{v2} -value [MPa] on the surface of the UGL		≥ 80	≥ 100	≥ 120	≥ 150	≥ 100	≥ 120	≥ 150		
			1]			Î	10		
Type of UGL	Crushed rock base course [cm]	1 5*	15*	25	35**	÷	20	25		
	Gravel base course [cm]	15*	15*	30	50**	-	25	35		
	Frost blanket course [cm] made of predominantly crushed material	15*	20	30	X	15*	25	>		
	Frost blanket course [cm] made of predominantly uncrushed material	20	25	35	X	14	-	>		
			1	$\widehat{1}$						
Ev2-value [MPa] for base			4	80						
	Base	Formation								



Dutch Standard (2018)

Support Improvement Factor (SIF)

Modulus Improvement Factor (MIF)

Ideal Test Method

- Ability to capture mechanism of confinement
- Provide parameter(s) suitable for M-E design
- Provide good repeatability
- Parameters that distinguish performance of different geosynthetics
- Sensitivity under low strain conditions
- Easy to do

(Ref. Zornberg, 2011)

(Ref. PRS-Med, 2016

General

- Adequate progress in past decade to address design methods in more detail
- Identify/ recommend suitable test methods to characterise reinforced/ composite layer
- Provide parameters suitable for M-E design?
- Representative case studies to validate performance/ design methods

Request

Want to join us, or make contributions or suggestions?
Projects using GS in pavements?

Please contact Philip Joubert (WG Coordinator) philip.joubert@rhdhv.com