ROAD PAVEMENTS FORUM

2 – 3 July 2019

RECLAIMED MATERIALS COMMITTEE

FEEDBACK

Present reclaimed materials as a viable secondary material for use in road construction and rehabilitation

- To stimulate the industry towards secondary materials
- Provide case studies on projects making use of reclaimed materials
- Develop guidelines with respect to the use of reclaimed materials

RecMat committee

Representatives from: City of Cape Town GreenCape SANRAL Martin and East Stellenbosch University The Concrete Institute BVi Consulting Engineers

Present reclaimed materials as a viable secondary material for use in road construction and rehabilitation

- National Road N2 in Cape Town at Borcherd's Quarry
- Provincial Main Road P255 in Durban, between Hillcrest and Waterfall

RPF 9 May 2018

Two case studies presented by Kirsten Barnes of GreenCape Present reclaimed materials as a viable secondary material for use in road construction and rehabilitation

- Durability testing
- Call for trial sections

RPF 9 May 2018

RecMat committee feedback presented by Ian Bowker of City of Cape Town Present reclaimed materials as a viable secondary material for use in road construction and rehabilitation

- Durability testing
- Guidelines
- Case study

RPF 2 and 3 July 2019

Feedback

Durability testing

For comparison purposes and to determine if COTO specifications are met

Performed on mixes of RCA and masonry, and compared to G2

- G2 (DMI)
- 100% RCA
- 90% RCA
- 80% RCA
- 70% RCA

Permanent deformation

Triaxial testing – repeated loading (RLT) and resilient Modulus (M_R)

Durability

Ethylene glycol Durability mill index

ACV

10% Fact

COTO specification

Findings

Discussion

Ethylene glycol

90% RCA

		RCA Content	Method	Before	After	Passing %loss	0.425mm Before	After	%loss	DMI
		G2 (PI=3)	Dry ball Water + ball Water mill	21.7 21.7 21.7 21.7	23.9 24.8 22.9	9.2 12.5 5.2	201010	7 4001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	74.4
		RCA	Dry ball Water + ball Water mill	18.0 18.0 18.0	29.2 30.6 23.1	38.4 41.2 22.1	6.0 6.0 6.0	9.0 7.0 7.0	33.3 14.3 14.3	30.6
		70%RCM	Dry ball Water + ball Water mill	18.5 18.5 18.5	24.5 24.4 20.3	24.5 24.2 8.9				24.5
		30%RCA	Dry ball Water + ball Water mill	17.6 17.6 17.6	25.6 26.4 21.5	31.3 33.3 18.1	7.0 7.0 7.0	10.0 8.0 9.0	30.0 12.5 22.2	26.4
Durabi	lity	20%RCA	Dry ball Water + ball Water mill				5.0 5.0 5.0	7.0 6.0 6.0	28.6 16.7 16.7	7.0
		10%RCA	Dry ball Water + ball Water mill				7.0 7.0 7.0	10.0 8.0 8.0	30.0 12.5 12.5	10.0
. Durability	mill index	100% RCM	Dry ball Water + ball Water mill	18.3 18.3 18.3	26.0 26.8 21.6	29.6 31.7 <u>15.3</u>				26.8

			ACV (kN)		10% FA	CT (kN)
Source	RCA Content	CBR	Dry	Wet	Dry	Wet
SU	100%	198*				
M&E	100%	80	26.5	26.7	151	149
M&E	90%	45	24.1	24.7	166	162
M&E	80%	50	24.2	25.1	165	159
M&E	70%	53	25.1	26.2	159	153

*sample consisted of a lab constituted grading and compaction at 100% Vibratory MOD (=103% MOD AASHTO)

Durability

ACV

10% Fact

RecMat

COTO specification Findings Discussion • Stabilisation ICC ITS

Source	RCA Content	% Cement	0	2	4	6	8	10	12
M&E		pН	8.1	10.19	10.88	11	11.04	11.07	11.2
SU 1	100% RCA	pН	12.83	12.83	12.83	12.83			
SU 2		pН	9.45	11.86	12.2	12.4			
M&E	90% RCA	pН	10.9	11.08	12.02	12.02	12.06	12.08	12.08
M&E	80% RCA	pН	10.03	11.06	12.01	12.04	12.04	12.06	12.06
M&E	70% RCA	pН	8.5	11	12.09	12.14	12.14	12.17	12.17

Source: Martin & East and Agnello (Stellenbosch University)

ICC

Source	RCA Content	Grading	% Cement	Initial pH	24 Hours	7 Days	28 days
SU	100%	Continious	2	10.8	303.6	493.6	892.7
SU	100%	Gap	2	11.4	357.9	634.4	1211.08
M&E	90%	Continious	2	10.9	195	215	
M&E	80%	Continious	2	10.03	235	256	
M&E	70%	Continious	2	8.5	269	294	

Source: Martin & East and Beardmore (Stellenbosch University)

ITS

Variability

Higher absorption Lower specific gravity

Potential for decreased abrasion resistance Mortar content influences the mechanical properties of the material

Summary of results

Further testing

Stellenbosch University

- Further structural performance evaluation
- Shrinkage potential (influence of variables such as humidity)
 - Water absorption on durability
 - Managing variability in self-cementation
 - Further durability mill testing on order to correlate to performance
 - The main objective is to correlate durability aspects and how this effects performance

Guidelines

Read in conjunction with COTO

Developed in order for authorities, consultants or contractors to propose the use of alternative materials for use in road building projects

- Reduced reliance on virgin materials
- Reduced CO₂ emissions
- Reduced energy costs
- Based on RCA and RMA

Guidelines

Work in progress

Chapter 1 - Introduction

Chapter 2 – Applicable legislation and legal

Chapter 3 – Selection and processing

Chapter 4 – Material specification guidelines -

Chapter 5 - Material specification guidelines -

Chapter 6 – Guidelines for construction Chapter 7 – Case studies

Material specifications

- Ensure durability
- Ensure applicability

Contents

- Introduction
- Literature study
- Applications for RCA and RMA in South Africa
- Constituent requirements for RCA and RMA
- Utilising RCA and RMA in South Africa
- Additional durability tests

Introduction

- Provide a suitable platform for construction of overlying layers
- Contribute to the structural capacity of the pavement to ensure acceptable in-service life

Literature study

- Design guidelines based on research from *Delft University of Technology* and USA DOTs.
- Constituents of reclaimed concrete and mix granulates
- Properties of RCA and RMA
- Research on mix granulates

Applications of RCA and RMA in South Africa

•Unbound layers

•Cement stabilised sub-base layer

•Selected layer

Unbound

Application limited to subbase (and below) layers Constituent requirements specified in guideline COTO specifications for a given AG material Additional durability testing requirements

Bound

Application limited to sub-base layers Constituent requirements specified in guideline COTO specifications for a given C class material Additional durability testing requirements

Constituent requirements

- RCA
- RCA and RMA

Table 4-1: Reclaimed concrete granulates constituent limits (CROW, 1995).

Reclaimed Concrete Granulates						
Constituents		Description	Limit (% mass/mass)			
Main	Α	Crushed gravel concrete and crushed-stone concrete, with a particle density of at least 2100 kg/m ³	A + B ≥ 80			
Maili	В	Other crushed stone material and stony material, with a particle density of at least 2100 kg/m ³	B ≤ 10			
Secondary	с	Crushed masonry with a particle density of at least 1600 km/m ³ and other crushed stony material (light weight concrete, glass, slag, etc.)	C + D ≤ 10 D ≤ 5			
		Crushed asphalt				
Impurities	E	Gypsum and non-stony material ((non)-ferro metal, plastics, rubbers, polystyrene, etc.)	E ≤ 1			
Impundes	F	Decomposed organic material (wood, rope, paper, plants, remains, etc.)	$F \leq 0.1$			

Constituent requirements

- RCA
- RCA and RMA

Table 4-2: Mix granulates constituent limits (CROW, 1995).

RCA and RMA — Reclaimed Concrete and Masonry Aggregate						
Constituents		Description	Limit (% mass/mass)			
	Α	Crushed gravel concrete or crushed-stone concrete, with a particle density of at least 2100 kg/m ³	A+B ≥ 50			
Main	В	Other crushed stone and stony material, with a particle density of at least 2100 kg/m ³	A ≥ 45			
	С	Crushed masonry, other crushed stone and stony material, with a particle density of at least 1600 kg/m ^{3}	C ≤ 50			
Secondary	D	Other crushed stone and stony material (light weight concrete, glass, slag, etc.)	D + E ≤ 10			
	E	Crushed asphalt	ESD			
Impurities	F	Gypsum and non-stony material ((non)-ferro metal, plastics, rubbers, polystyrene, etc.)	F ≤ 1			
	G	Decomposed organic material (wood, rope, paper, plants, remains, etc.)	G ≤ 0.1			

Utilising reclaimed concrete and masonry aggregate in South Africa • Guideline for use developed

Utilising reclaimed concrete and masonry aggregate in South Africa

• Correlation between G class materials and performance of RCA and RMA combinations sought

Table 4-3: Limitations on the concrete and masonry content for a given G-Class material.

Material Class	Concrete Content (%)	Masonry Content (%)
G4	100	0
G5(a)	80-100	0-20
G5(b)	65-100	0-35
G6	65-100	0-35
G7	65-100	0-35
G8	65-100	0-35
G9	50-100	0-50
G10	50-100	0-50

Utilising reclaimed concrete and masonry aggregate in South Africa

• Correlation between G class materials and performance of RCA and RMA combinations sought

Table 4-4: Reclaimed concrete and masonry contents applicable to cement stabilised materials.

Material Class	Concrete Content (%)	Masonry Content (%)	Material before treatment
C3 or higher	80-100	0-20	G5(a)
C4	80-100	0-20	G5(b) & G6

Utilising reclaimed concrete and masonry aggregate in South Africa

• Correlation between G class materials and performance of RCA and RMA combinations sought

Bound and unbound reclaimed materials, defined in the tables above, are applicable to the following:

Material Class	Suitability	Traffic Volume
G4	 Unbound base layer 	Low
C 5(a)	 Unbound base layer 	Low
(6)(6)	 Bound subbase layer (C3 or higher) 	High
CF(b)	 Unbound base layer 	Low
G3(D)	 Bound subbase layer (C4) 	Low
66	 Unbound base layer 	Low
	 Bound subbase layer (C4) 	Low
G7	- Selected material	-
G8	- Selected material	-
G9	- Selected material	-
G10	- Fill material	-

Re-use existing concrete road in sub-base

- Break up and stockpile unreinforced concrete pavement
- Cut and fill to correct alignment
- Rebuild foundation and fill
- Crush and screen concrete to G4 specification
- Blend with imported G5
- Construct new C4 sub-base
- Construct new G4 crushed stone base
- Cape seal

Further case study

CONTRACT C1008.01: THE REHABILITATION OF DIVISIONAL ROAD 1688 FROM CALITZDORP (km 1.00) TO THE CALITZDORP SPA TURNOFF (km 15.64)

CONTRACT C1008.01: THE REHABILITATION OF DIVISIONAL ROAD 1688 FROM CALITZDORP (km 1.00) TO THE CALITZDORP SPA TURNOFF (km 15.64)

Thank you

- Andrew Geel 🔒
- +27 83 261 6703
- andrewg@bviwc.co.za
 - www.bvi.co.za 💊

industry towards the use of secondary materials