Junkyard planet - opportunities for the re-use of builders rubble

Chantal Rudman

(Agnello, Beardmore, Cleghorn, Bredenkamp, Goosen, Kotze, Nel, Semugaza, Tawine, Tredoux)

Department of Civil Engineering

"Waste is the evidence we are doing something wrong.

Landfilling means we are burying the evidence.

Incineration means we are burning the evidence"

cementation / be

lity Practical considerations

Conclusions

Waste crisis in South Africa

Legal landfills are few and far between.....

- 98 000 000 tonnes of waste generated
- 600 000 tonnes recycled
- Statistics show it takes > 5 years (+1 year to build) if no public interventions. Currently 10 years
- Example: CoCT waste disposal currently spending 70% of their budget on operations

cementation

ity Considerations

Conclusions

Waste crisis in South Africa

Around 20-30% of landfill sites are builders' rubble

cementation

Durability Cons

Conclusions

cementation

ctural aviour > Dura Practical considerations

Conclusions

Cementation

ability Practica

Conclusions

Origins self-
 cementation

> Structural behaviour > D ity Practical considerations

Conclusions

Problem Statement

Why does SA not divert to alternatives???

• Supply and quality

Virgin materials is not always better

- Cape quarries clay content
- New borrowpits take longer than 9 months to get approval

It has monetary value

- CoCT at cost of landfilling at R400/t, cost savings will be R224 million from diverting 60% of material from 2015 baseline data in 1 year..... In perspective Capex for CoCT 2016/17 = R237 million
- Cost savings could be **95%** of capex budget for 2016/17
- Illegal dumping R350 million per year

cementation

behaviour

ty Practical considerations

Conclusions

Problem Statement

-

cementation

behaviour

ty Practical considerations

Conclusions

Problem Statement

Recycled concrete aggregate and masonry

 \sim mentation >1

lity Practical considerations

Conclusions

Comparing the South African situation with other countries

Asphalt Layer (20 - 50 mm) Unbound high quality crushed aggregate (100 - 300mm) Cemented mixture (100 - 300mm) Soil fill and unbound Mixture (Natural and selected)

South Africa

Industrialised Countries

Origins selfcementation

behavior

Practical considerations

Conclusions

Phase 1

Origins selfcementation

al > Durability

Practical considerations

Conclusions

Summary

Layout >> Phase 2

Structural behaviour

Structural behaviour

Introduction Origins selfcementation Structural Durability Practical Co

Permanent Deformation>> Unexposed >> 0 month vs 1 month

cementation

Structural behaviour

ty Practical considerations

Conclusions

Permanent Deformation>> Durability is an issue

n Origins self-

Structural behaviour

ity Practical considerations

Conclusions

Permanent Deformation>> Exposed >> o month

Defining Boundaries >> Summary

	Exposed	Unexposed	Exposed	Unexposed
	o month	o month	1 month	1 month
Processing + self-cementation				

Pavement Analysis >> Pavement 2 >> DSR comparison

Origins self-

behaviour

Durability Considerations

Conclusions

Shrinkage

Introduction Origins selfcementation Structural Durability Considerations Conclu

Shrinkage >> Experimental Data

Days

Introduction Origins self- Structural cementation behaviour

Durability Pra

Conclusions

Shrinkage >> Theory

Introduction Origins selfcementation Structural Durability

(7)

Practical considerations

Conclusions

Shrinkage >> Houben Model

- P = Primary cracks
- S = Secondary cracks
- Tertiary cracks

ntroduction Origins self- Structural cementation

Durability Considerations

Conclusions

Shrinkage >> Houben Model >> Typical Output

troduction Origins self- Structural Cementation Cementation

Durability Considerations

Conclusions

Shrinkage >> Sensitivity analysis >> Empirical Models >> R_{min}

 $rac{1}{2}$ entation $rac{2}{2}$ beha

Durability

Practical considerations

Conclusions

Shrinkage >> Sensitivity analysis >> Ranking Variables

* measured against unit of x axis

 $\operatorname{Croduction}$ Origins self- Struct Struct

Practical considerations

Conclusions

Practical Considerations

ntroduction Origins self- Structu

Practical considerations

Conclusions

Proposed guidelines

	In-situ/ immediate construction [Unexposed]	Stockpile [Exposed + Unexposed]	Stockpile [Exposed]	
Processing sampling	\checkmark			
	\checkmark			
	Turning and wetting of stockpiles preferred			
	١			
Sampling	×		[✓]	
Testing	Immediately	Mix design to be rechecked before construction	No significant material response change	
	Testing frequency to be developed			

oduction > Origins selfcementation > Structural > Durability

pility Practical considerations

Conclusions

- Response of material changes
- Origin of self-cementation varies

- Bound and unbound response
- Limits on stress ratio for Unexposed

- RCA susceptible to carbonation
- Moisture addition important

- RCA susceptible to shrinkage
- Cement must be added to mitigate shrinkage
- Less cement needed

Unbound form, performs superior to conventional materials

luction cementation behav Durability Practical considerations

Conclusions

The way forward

Uptake of RCA and RCM in the next five years will be significant

Trial sections are being built in the next few months.

cementation /

Durability considerations

Conclusions

The way forward

 \sim mentation > k

Durability considerations

Conclusions

The way forward

rigins self- > Semigrical self-

Durability Practical considerations

Conclusions

THANK YOU

